2,313 research outputs found
Window functions and sigmoidal behaviour of memristive systems
Summary: A common approach to model memristive systems is to include empirical window functions to describe edge effects and nonlinearities in the change of the memristance. We demonstrate that under quite general conditions, each window function can be associated with a sigmoidal curve relating the normalised time-dependent memristance to the time integral of the input. Conversely, this explicit relation allows us to derive window functions suitable for the mesoscopic modelling of memristive systems from a variety of well-known sigmoidals. Such sigmoidal curves are defined in terms of measured variables and can thus be extracted from input and output signals of a device and then transformed to its corresponding window. We also introduce a new generalised window function that allows the flexible modelling of asymmetric edge effects in a simple manner
A new bound of the ℒ2[0, T]-induced norm and applications to model reduction
We present a simple bound on the finite horizon ℒ2/[0, T]-induced norm of a linear time-invariant (LTI), not necessarily stable system which can be efficiently computed by calculating the ℋ∞ norm of a shifted version of the original operator. As an application, we show how to use this bound to perform model reduction of unstable systems over a finite horizon. The technique is illustrated with a non-trivial physical example relevant to the appearance of time-irreversible phenomena in statistical physics
Protein multi-scale organization through graph partitioning and robustness analysis: Application to the myosin-myosin light chain interaction
Despite the recognized importance of the multi-scale spatio-temporal
organization of proteins, most computational tools can only access a limited
spectrum of time and spatial scales, thereby ignoring the effects on protein
behavior of the intricate coupling between the different scales. Starting from
a physico-chemical atomistic network of interactions that encodes the structure
of the protein, we introduce a methodology based on multi-scale graph
partitioning that can uncover partitions and levels of organization of proteins
that span the whole range of scales, revealing biological features occurring at
different levels of organization and tracking their effect across scales.
Additionally, we introduce a measure of robustness to quantify the relevance of
the partitions through the generation of biochemically-motivated surrogate
random graph models. We apply the method to four distinct conformations of
myosin tail interacting protein, a protein from the molecular motor of the
malaria parasite, and study properties that have been experimentally addressed
such as the closing mechanism, the presence of conserved clusters, and the
identification through computational mutational analysis of key residues for
binding.Comment: 13 pages, 7 Postscript figure
Community detection and role identification in directed networks: understanding the Twitter network of the care.data debate
With the rise of social media as an important channel for the debate and discussion of public affairs, online social networks such as Twitter have become important platforms for public information and engagement by policy makers. To communicate effectively through Twitter, policy makers need to understand how influence and interest propagate within its network of users. In this chapter we use graph-theoretic methods to analyse the Twitter debate surrounding NHS Englands controversial care.data scheme. Directionality is a crucial feature of the Twitter social graph - information flows from the followed to the followers - but is often ignored in social network analyses; our methods are based on the behaviour of dynamic processes on the network and can be applied naturally to directed networks. We uncover robust communities of users and show that these communities reflect how information flows through the Twitter network. We are also able to classify users by their differing roles in directing the flow of information through the network. Our methods and results will be useful to policy makers who would like to use Twitter effectively as a communication medium
Laplacian Dynamics and Multiscale Modular Structure in Networks
Most methods proposed to uncover communities in complex networks rely on
their structural properties. Here we introduce the stability of a network
partition, a measure of its quality defined in terms of the statistical
properties of a dynamical process taking place on the graph. The time-scale of
the process acts as an intrinsic parameter that uncovers community structures
at different resolutions. The stability extends and unifies standard notions
for community detection: modularity and spectral partitioning can be seen as
limiting cases of our dynamic measure. Similarly, recently proposed
multi-resolution methods correspond to linearisations of the stability at short
times. The connection between community detection and Laplacian dynamics
enables us to establish dynamically motivated stability measures linked to
distinct null models. We apply our method to find multi-scale partitions for
different networks and show that the stability can be computed efficiently for
large networks with extended versions of current algorithms.Comment: New discussions on the selection of the most significant scales and
the generalisation of stability to directed network
A quantitative examination of the impact of featured articles in Wikipedia
This paper presents a quantitative examination of the impact of the presentation of featured articles as quality content in the main page of several Wikipedia editions. Moreover, the paper also presents the analysis performed to determine the number of visits received by the articles promoted to the featured status. We have analyzed the visits not only in the month when articles awarded the promotion or were included in the main page, but also in the previous and following ones. The main aim for this is to assess the attention attracted by the featured content and the different dynamics exhibited by each community of users in respect to the promotion process. The main results of this paper are twofold: it shows how to extract relevant information related to the use of Wikipedia, which is an emerging research topic, and it analyzes whether the featured articles mechanism achieve to attract more attention
Temporal characterization of the requests to Wikipedia
This paper presents an empirical study about the temporal patterns
characterizing the requests submitted by users to Wikipedia.
The study is based on the analysis of the log lines registered by the
Wikimedia Foundation Squid servers after having sent the appropriate
content in response to users' requests. The
analysis has been conducted regarding the ten most visited editions of
Wikipedia and has involved more than 14,000 million log lines
corresponding to the traffic of the entire year 2009. The conducted methodology
has mainly consisted in the parsing and filtering
of users' requests according to the study directives. As a result, relevant information
fields have been finally stored in a database for persistence and further
characterization. In this way, we, first, assessed, whether the traffic to Wikipedia could serve
as a reliable estimator of the overall traffic to all the Wikimedia Foundation
projects. Our subsequent analysis of the temporal evolutions corresponding to
the different types of requests to Wikipedia revealed interesting differences
and similarities among them that can be related to the users' attention to the Encyclopedia.
In addition, we have performed separated characterizations of each Wikipedia edition
to compare their respective evolutions over time
A Service based Development Environment on Web 2.0 Platforms
Governments are investing on the IT adoption and promoting the socalled e-economies as a way to improve competitive advantages. One of the main government’s actions is to provide internet access to the most part of the population, people and organisations. Internet provides the required support for connecting organizations, people and geographically distributed developments teams. Software developments are tightly related to the availability of tools and platforms needed for products developments. Internet is becoming the most widely used platform. Software forges such as SourceForge provide an integrated tools environment gathering a set of tools that are suited for each development with a low cost. In this paper we propose an innovating approach based on Web2.0, services and a method engineering approach for software developments. This approach represents one of the possible usages of the internet of the future
Switchable Genetic Oscillator Operating in Quasi-Stable Mode
Ring topologies of repressing genes have qualitatively different long-term
dynamics if the number of genes is odd (they oscillate) or even (they exhibit
bistability). However, these attractors may not fully explain the observed
behavior in transient and stochastic environments such as the cell. We show
here that even repressilators possess quasi-stable, travelling-wave periodic
solutions that are reachable, long-lived and robust to parameter changes. These
solutions underlie the sustained oscillations observed in even rings in the
stochastic regime, even if these circuits are expected to behave as switches.
The existence of such solutions can also be exploited for control purposes:
operation of the system around the quasi-stable orbit allows us to turn on and
off the oscillations reliably and on demand. We illustrate these ideas with a
simple protocol based on optical interference that can induce oscillations
robustly both in the stochastic and deterministic regimes.Comment: 24 pages, 5 main figure
- …
