24 research outputs found
Influence de l'hétérogénéité des propriétés mécaniques sur la résistance de l'os trabéculaire humain
Afin de mieux comprendre le comportement mécanique de l os trabéculaire et d améliorer la prédiction du risque de fracture, l objectif de cette thèse est de développer un modèle numérique bio-fidèle prenant en compte l hétérogénéité tissulaire, et de déterminer les contraintes mécaniques au sein des travées osseuses, dans le domaine de déformation élastique. À l échelle tissulaire, une étude par nanoindentation a permis de dissocier les comportements élastiques et plastiques de l os en fonction de sa composition (minéral/collagène). Ainsi, le comportement élastique du tissu osseux serait principalement lié à sa quantité de minéral alors que ses propriétés plastiques seraient davantage liées à la phase organique. Une loi reliant le degré de minéralisation de l os (DMB) au module élastique a été déterminée dans l os humain. La création d un modèle numérique reproduisant de manière rigoureuse le comportement élastique de l os trabéculaire, nécessite la prise en compte de l hétérogénéité de la quantité de minéral (DMB) et donc son acquisition en 3D. Grâce à une méthode de recalage d image 2D/3D, les acquisitions de microtomographie ont été comparées aux valeurs obtenues par microradiographie quantitative, méthode de référence de mesure du DMB. Sous certaines conditions, la microtomographie permet une évaluation correcte de l hétérogénéité minérale. La création et l analyse d un modèle numérique par éléments finis de l os trabéculaire, à partir des images de tomographie, a montré l importance des paramètres du modèle (taille et formulation des éléments) ainsi que le rôle de l hétérogénéité minérale sur l évaluation des contraintes locales appliquées aux travées osseuses.Finite element modeling has become more and more suitable to estimate the mechanical properties of trabecular bone. Such models tend to be used to evaluate bone fracture risk. The main goal of this study was to create a bio-faithful model of trabecular bone to evaluate elastic stresses fields in trabeculae. In a first part, a nanoindentation study lead to a dissociation of elastic and plastic behavior of bone tissue, depending of its composition (mineral/collagen). At osteon level, bone elastic behavior mainly depends on mineral quantity whereas its plastic behavior mainly depends on collagen maturity. The relation between degree of mineralization of bone (DMB) and elastic modulus have been determined for human bone. The purpose of second part of the study was to evaluate DMB heterogeneity inside a 3D model of trabecular bone. Using 2D/3D registration, we compare the results obtain with high resolution microtomography to those from quantitative microradiography, the goldstandard method used to measure DMB. We prove that it was possible to obtain a good evaluation of mineral heterogeneity in trabecular bone by tomography. The last part of this study, is dedicated to the creation of a finite element model of trabecular bone. After analyzing the influence of finite element modeling parameter on the assessment of mechanical response (size and element formulation), we showed that the integration of mineral heterogeneity at the tissue level lead to strong modifications of stress fields in bone trabeculae. The results of this study prove that bone mineral heterogeneity is an important parameter and should be taken into account when evaluating trabecular bone mechanical properties.VILLEURBANNE-DOC'INSA-Bib. elec. (692669901) / SudocSudocFranceF
Protein-free formation of bone-like apatite: New insights into the key role of carbonation
International audienceThe nanometer-sized plate-like morphology of bone mineral is necessary for proper bone mechanics and physiology. However, mechanisms regulating the morphology of these mineral nanocrystals remain unclear. The dominant hypothesis attributes the size and shape regulation to organic-mineral interactions. Here, we present data supporting the hypothesis that physicochemical effects of carbonate integration within the apatite lattice control the morphology, size, and mechanics of bioapatite mineral crystals. Carbonated apatites synthesized in the absence of organic molecules presented plate-like morphologies and nanoscale crystallite dimensions. Experimentally-determined crystallite size, lattice spacing, solubility and atomic order were modified by carbonate concentration. Molecular dynamics (MD) simulations and density functional theory (DFT) calculations predicted changes in surface energy and elastic moduli with carbonate concentration. Combining these results with a scaling law predicted the experimentally observed scaling of size and energetics with carbonate concentration. The experiments and models describe a clear mechanism by which crystal dimensions are controlled by carbonate substitution. Furthermore, the results demonstrate that carbonate substitution is sufficient to drive the formation of bone-like crystallites. This new understanding points to pathways for biomimetic synthesis of novel, nanostructured biomaterials
A new murine model of osteoblastic/osteolytic lesions from human androgen-resistant prostate cancer
BACKGROUND: Up to 80% of patients dying from prostate carcinoma have developed bone metastases that are incurable. Castration is commonly used to treat prostate cancer. Although the disease initially responds to androgen blockade strategies, it often becomes castration-resistant (CRPC for Castration Resistant Prostate Cancer). Most of the murine models of mixed lesions derived from prostate cancer cells are androgen sensitive. Thus, we established a new model of CRPC (androgen receptor (AR) negative) that causes mixed lesions in bone. METHODS: PC3 and its derived new cell clone PC3c cells were directly injected into the tibiae of SCID male mice. Tumor growth was analyzed by radiography and histology. Direct effects of conditioned medium of both cell lines were tested on osteoclasts, osteoblasts and osteocytes. RESULTS: We found that PC3c cells induced mixed lesions 10 weeks after intratibial injection. In vitro, PC3c conditioned medium was able to stimulate tartrate resistant acid phosphatase (TRAP)-positive osteoclasts. Osteoprotegerin (OPG) and endothelin-1 (ET1) were highly expressed by PC3c while dikkopf-1 (DKK1) expression was decreased. Finally, PC3c highly expressed bone associated markers osteopontin (OPN), Runx2, alkaline phosphatase (ALP), bone sialoprotein (BSP) and produced mineralized matrix in vitro in osteogenic conditions. CONCLUSIONS: We have established a new CRPC cell line as a useful system for modeling human metastatic prostate cancer which presents the mixed phenotype of bone metastases that is commonly observed in prostate cancer patients with advanced disease. This model will help to understand androgen-independent mechanisms involved in the progression of prostate cancer in bone and provides a preclinical model for testing the effects of new treatments for bone metastases
Influence of bone tissue heterogeneity on the strength of human trabecular bone
Afin de mieux comprendre le comportement mécanique de l’os trabéculaire et d’améliorer la prédiction du risque de fracture, l’objectif de cette thèse est de développer un modèle numérique « bio-fidèle » prenant en compte l’hétérogénéité tissulaire, et de déterminer les contraintes mécaniques au sein des travées osseuses, dans le domaine de déformation élastique. À l’échelle tissulaire, une étude par nanoindentation a permis de dissocier les comportements élastiques et plastiques de l’os en fonction de sa composition (minéral/collagène). Ainsi, le comportement élastique du tissu osseux serait principalement lié à sa quantité de minéral alors que ses propriétés plastiques seraient davantage liées à la phase organique. Une loi reliant le degré de minéralisation de l’os (DMB) au module élastique a été déterminée dans l’os humain. La création d’un modèle numérique reproduisant de manière rigoureuse le comportement élastique de l’os trabéculaire, nécessite la prise en compte de l’hétérogénéité de la quantité de minéral (DMB) et donc son acquisition en 3D. Grâce à une méthode de recalage d’image 2D/3D, les acquisitions de microtomographie ont été comparées aux valeurs obtenues par microradiographie quantitative, méthode de référence de mesure du DMB. Sous certaines conditions, la microtomographie permet une évaluation correcte de l’hétérogénéité minérale. La création et l’analyse d’un modèle numérique par éléments finis de l’os trabéculaire, à partir des images de tomographie, a montré l’importance des paramètres du modèle (taille et formulation des éléments) ainsi que le rôle de l’hétérogénéité minérale sur l’évaluation des contraintes locales appliquées aux travées osseuses.Finite element modeling has become more and more suitable to estimate the mechanical properties of trabecular bone. Such models tend to be used to evaluate bone fracture risk. The main goal of this study was to create a bio-faithful model of trabecular bone to evaluate elastic stresses fields in trabeculae. In a first part, a nanoindentation study lead to a dissociation of elastic and plastic behavior of bone tissue, depending of its composition (mineral/collagen). At osteon level, bone elastic behavior mainly depends on mineral quantity whereas its plastic behavior mainly depends on collagen maturity. The relation between degree of mineralization of bone (DMB) and elastic modulus have been determined for human bone. The purpose of second part of the study was to evaluate DMB heterogeneity inside a 3D model of trabecular bone. Using 2D/3D registration, we compare the results obtain with high resolution microtomography to those from quantitative microradiography, the goldstandard method used to measure DMB. We prove that it was possible to obtain a good evaluation of mineral heterogeneity in trabecular bone by tomography. The last part of this study, is dedicated to the creation of a finite element model of trabecular bone. After analyzing the influence of finite element modeling parameter on the assessment of mechanical response (size and element formulation), we showed that the integration of mineral heterogeneity at the tissue level lead to strong modifications of stress fields in bone trabeculae. The results of this study prove that bone mineral heterogeneity is an important parameter and should be taken into account when evaluating trabecular bone mechanical properties
Influence de l’hétérogénéité des propriétés mécaniques sur la résistance de l’os trabéculaire humain
Finite element modeling has become more and more suitable to estimate the mechanical properties of trabecular bone. Such models tend to be used to evaluate bone fracture risk. The main goal of this study was to create a bio-faithful model of trabecular bone to evaluate elastic stresses fields in trabeculae. In a first part, a nanoindentation study lead to a dissociation of elastic and plastic behavior of bone tissue, depending of its composition (mineral/collagen). At osteon level, bone elastic behavior mainly depends on mineral quantity whereas its plastic behavior mainly depends on collagen maturity. The relation between degree of mineralization of bone (DMB) and elastic modulus have been determined for human bone. The purpose of second part of the study was to evaluate DMB heterogeneity inside a 3D model of trabecular bone. Using 2D/3D registration, we compare the results obtain with high resolution microtomography to those from quantitative microradiography, the goldstandard method used to measure DMB. We prove that it was possible to obtain a good evaluation of mineral heterogeneity in trabecular bone by tomography. The last part of this study, is dedicated to the creation of a finite element model of trabecular bone. After analyzing the influence of finite element modeling parameter on the assessment of mechanical response (size and element formulation), we showed that the integration of mineral heterogeneity at the tissue level lead to strong modifications of stress fields in bone trabeculae. The results of this study prove that bone mineral heterogeneity is an important parameter and should be taken into account when evaluating trabecular bone mechanical properties.Afin de mieux comprendre le comportement mécanique de l’os trabéculaire et d’améliorer la prédiction du risque de fracture, l’objectif de cette thèse est de développer un modèle numérique « bio-fidèle » prenant en compte l’hétérogénéité tissulaire, et de déterminer les contraintes mécaniques au sein des travées osseuses, dans le domaine de déformation élastique. À l’échelle tissulaire, une étude par nanoindentation a permis de dissocier les comportements élastiques et plastiques de l’os en fonction de sa composition (minéral/collagène). Ainsi, le comportement élastique du tissu osseux serait principalement lié à sa quantité de minéral alors que ses propriétés plastiques seraient davantage liées à la phase organique. Une loi reliant le degré de minéralisation de l’os (DMB) au module élastique a été déterminée dans l’os humain. La création d’un modèle numérique reproduisant de manière rigoureuse le comportement élastique de l’os trabéculaire, nécessite la prise en compte de l’hétérogénéité de la quantité de minéral (DMB) et donc son acquisition en 3D. Grâce à une méthode de recalage d’image 2D/3D, les acquisitions de microtomographie ont été comparées aux valeurs obtenues par microradiographie quantitative, méthode de référence de mesure du DMB. Sous certaines conditions, la microtomographie permet une évaluation correcte de l’hétérogénéité minérale. La création et l’analyse d’un modèle numérique par éléments finis de l’os trabéculaire, à partir des images de tomographie, a montré l’importance des paramètres du modèle (taille et formulation des éléments) ainsi que le rôle de l’hétérogénéité minérale sur l’évaluation des contraintes locales appliquées aux travées osseuses
Finite element dependence of stress evaluation for human trabecular bone
International audienc
Human dissimilarity ratings of musical instrument timbre: A computational meta-analysis
International audienc
Learning metrics on spectrotemporal modulations reveals the perception of musical instrument timbre
International audienceHumans excel at using sounds to make judgements about their immediate environment. In particular, timbre is an auditory attribute that conveys crucial information about the identity of a sound source, especially for music. While timbre has been primarily considered to occupy a multidimensional space, unravelling the acoustic correlates of timbre remains a challenge. Here we re-analyse 17 datasets from published studies between 1977 and 2016 and observe that original results are only partially replicable. We use a data-driven computational account to reveal the acoustic correlates of timbre. Human dissimilarity ratings are simulated with metrics learned on acoustic spectrotemporal modulation models inspired by cortical processing. We observe that timbre has both generic and experiment-specific acoustic correlates. These findings provide a broad overview of former studies on musical timbre and identify its relevant acoustic substrates according to biologically inspired models
The different facets of timbre: data-driven modelling of musical instruments sounds perception
International audienceAlthough extensively studied for many years, defining the timbre of musical sounds remains unclear and somewhatcontroversial. We here address this question by using representations of sounds inspired by auditory cortical processes - so-called spectro-temporal modulation representations - as front-end representations to interpretable metric learning techniques modelling human dissimilarity ratings. We present a meta-analysis of 17 published experiments on the perception of musical instrument timbre. The results reveal that these studies are only partly replicable. Interestingly, we observed that spectro-temporal modulations embed relevant information to model human dissimilarity ratings of musical instruments sounds. Thanks to an interpretable distance metric learning technique, the results strikingly suggest that humans use both generic and context-driven acoustical cues defining the different facets of musical instrument timbre. This study hereby provides a unique overview of 17 historical studies on timbre and points the limitation of the traditional dimensional analyses. We further propose a new way to investigate the acoustical correlates of timbre. The proposed methodology hence opens avenues to link acoustical representations to high-level human judgements
Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils
Collagen is a ubiquitous protein with remarkable mechanical properties. It is highly elastic, shows large fracture strength and enables substantial energy dissipation during deformation. Most of the connective tissue in humans consists of collagen fibrils composed of a staggered array of tropocollagen molecules, which are connected by intermolecular cross-links. In this study, we report a three-dimensional coarse-grained model of collagen and analyze the influence of enzymatic cross-links on the mechanics of collagen fibrils. Two representatives immature and mature cross-links are implemented in the mesoscale model using a bottom-up approach. By varying the number, type and mechanical properties of cross-links in the fibrils and performing tensile test on the models, we systematically investigate the deformation mechanisms of cross-linked collagen fibrils. We find that cross-linked fibrils exhibit a three phase behavior, which agrees closer with experimental results than what was obtained using previous models. The fibril mechanical response is characterized by: (i) an initial elastic deformation corresponding to the collagen molecule uncoiling, (ii) a linear regime dominated by molecule sliding and (iii) the second stiffer elastic regime related to the stretching of the backbone of the tropocollagen molecules until the fibril ruptures. Our results suggest that both cross-link density and type dictate the stiffness of large deformation regime by increasing the number of interconnected molecules while cross-links mechanical properties determine the failure strain and strength of the fibril. These findings reveal that cross-links play an essential role in creating an interconnected fibrillar material of tunable toughness and strength.United States. Office of Naval ResearchUnited States. Army Research OfficeNational Science Foundation (U.S.)Wellcome Trust (London, England) (Grant WT097347MA