1,226 research outputs found

    Inequalities in maternity care and newborn outcomes: one-year surveillance of births in vulnerable slum communities in Mumbai

    Get PDF
    Background: Aggregate urban health statistics mask inequalities. We described maternity care in vulnerable slum communities in Mumbai, and examined differences in care and outcomes between more and less deprived groups. Methods: We collected information through a birth surveillance system covering a population of over 280 000 in 48 vulnerable slum localities. Resident women identified births in their own localities and mothers and families were interviewed at 6 weeks after delivery. We analysed data on 5687 births over one year to September 2006. Socioeconomic status was classified using quartiles of standardized asset scores. Results: Women in higher socioeconomic quartile groups were less likely to have married and conceived in their teens (Odds ratio 0.74, 95% confidence interval 0.69–0.79, and 0.82, 0.78–0.87, respectively). There was a socioeconomic gradient away from public sector maternity care with increasing socioeconomic status (0.75, 0.70–0.79 for antenatal care and 0.66, 0.61–0.71 for institutional delivery). Women in the least poor group were five times less likely to deliver at home (0.17, 0.10–0.27) as women in the poorest group and about four times less likely to deliver in the public sector (0.27, 0.21–0.35). Rising socioeconomic status was associated with a lower prevalence of low birth weight (0.91, 0.85–0.97). Stillbirth rates did not vary, but neonatal mortality rates fell non-significantly as socioeconomic status increased (0.88, 0.71–1.08). Conclusion: Analyses of this type have usually been applied across the population spectrum from richest to poorest, and we were struck by the regularly stepped picture of inequalities within the urban poor, a group that might inadvertently be considered relatively homogeneous. The poorest slum residents are more dependent upon public sector health care, but the regular progression towards the private sector raises questions about its quality and regulation. It also underlines the need for healthcare provision strategies to take account of both sectors

    Synthesis of Nanocrystalline PZT by Hydrothermal Method

    Get PDF
    Synthesis of lead zirconium titanate by a simple, low-energy consumption hydrothermalmeans is being reported. The precursor materials have been chosen and the method is tailoredso that the process becomes economical and offers low lead loss. The synthesised powdershave been analysed by FTIR, XRD, SEM, TEM, and TGA. The results show the formation oftetragonal PZT nanoparticles with an average yield of ~75 per cent. On the basis of FTIR, theproduct formation is understood to proceed via the formation of a three metal cation hydroxidecomplex, that under hydrothermal treatment undergoes conversion directly to form the tetragonalphase of lead zirconium titanate

    A robust technique for optimal fitting of roll-over shapes of human locomotor systems

    Get PDF
    The roll-over shape (ROS) effectively characterizes the lower limb\u27s ability to roll forward during the single-limb support phase of human walking. ROS is modelled as an optimally fitted circular arc to the center of pressure (CoP) data transformed in the shank/leg-based local coordinate system. The commonly used method for optimal fitting of ROS is complex to implement and eliminates inherent individual variability in the ROS parameters during walking. We propose and validate a novel computerized method for optimal fitting of roll-over shapes of the lower limb during walking. Gait data of a healthy individual from Winter\u27s book was used to generate ankle-foot and knee-ankle-foot roll-over shapes using the proposed method. The goodness of fit and form of both the roll-over shapes were validated with the literature. To test the robustness of the proposed technique, small random perturbations were introduced to the transformed CoP data and the effect of these small changes in the data on the ROS parameters was studied. The ROS parameters such as radius, arc length, subtended arc angle, and horizontal and vertical shift in the arc center did not change substantially with small changes in the CoP data. The proposed method is computationally efficient, and easy to implement for optimal fitting and characterization of ROS

    Ovarian cancer plasticity and epigenomics in the acquisition of a stem-like phenotype

    Get PDF
    Aggressive epithelial ovarian cancer (EOC) is genetically and epigenetically distinct from normal ovarian surface epithelial cells (OSE) and early neoplasia. Co-expression of epithelial and mesenchymal markers in EOC suggests an involvement of epithelial-mesenchymal transition (EMT) in cancer initiation and progression. This phenomenon is often associated with acquisition of a stem cell-like phenotype and chemoresistance that correlate with the specific gene expression patterns accompanying transformation, revealing a plasticity of the ovarian cancer cell genome during disease progression

    Surface-modified Water hyacinth (Eichhornia crassipes) over activated carbon for wastewater treatment: A comparative account

    Get PDF
    Finding an economical, efficient and easy handling alternative for commercial grade activated charcoal (AC) in textile wastewater treatment is a dire need. To address this, a noxious weed water hyacinth (WH) has been explored as a ‘biosorbent’ for the decolorization of the hazardous textile dye,Remazol BrilliantRed 3BS (RBR 3BS) in wastewater.Anovel surface modification has been carried out using the quaternary ammonium salt, N-Cetyl-N,N,N–trimethyl ammonium bromide, to enhance the dye decolorization capacity of raw WH. The impact of several process parameters, viz. pH, dosage of adsorbent, temperature, concentration and contact time have been examined. Batch adsorption studies, kinetic-thermodynamics, isothermal modelling and error analysis have been studied to ascertain the efficacy of the adsorbent. A comparison of the results has been carried out with activated carbon (AC). Surface-modifiedWHshowed the highest dye uptake of 104.26 mg g–1, at 27 °C, which was about 10 times more than that ofAC. Isothermal, kinetic and thermodynamic studies were conducted for identification of adsorption type taking place for dye–adsorbent systems. Energy of activation was 8.65 kJ mol–1 for treatedWHand 8.98 kJ mol–1 forAC. It was proven that surface-modified WH had a high capability to replace AC for adsorption treatments

    Spectrum of CREBBP mutations in Indian patients with Rubinstein-Taybi syndrome

    Get PDF
    Rubinstein-Taybi syndrome (RSTS), a developmental disorder comprising abnormalities that include mental retardation, an unusual facial appearance, broad thumbs and big toes is frequently associated with molecular lesions in the CREB-binding protein gene, CREBBP. The objective of the present study was to identify and analyse CREBBP mutations in Indian RSTS patients on which there are no data. Direct sequencing of CREBBP performed in 13 RSTS patients identified the three zinc fingers (CH1, CH2, CH3) and HAT domain as mutational hotspots in which ten novel pathogenic mutations were localized. Functional analysis revealed that three of these mutations affecting amino acids Glu1459, Leu1668 and Glu1724 were critical for histone acetyltransferase activity. Twenty-eight novel CREBBP single-nucleotide polymorphisms (SNPs) were also identified in the Indian population. Linkage disequilibrium studies revealed associations between (i) SNP (rs129974/c.3836-206G greater than C) and mutation (p.Asp1340Ala); (ii) (rs130002) with mutation (p.Asn435Lys) and (iii) SNPs rs129974, rs130002 and SNP (c.3836-206G greater than C) signifying a disease affection status. In conclusion, the present study reports the highest detection rate of CREBBP mutations (76.9%) in RSTS patients to date, of which ten are predicted to be pathogenic and three critical for histone acetyltransferase activity. Moreover, identification of the association of CREBBP polymorphisms with disease susceptibility could be an important risk factor for the pathogenesis of RSTS

    Nuclear-mitochondrial genomic profiling reveals a pattern of evolution in epithelial ovarian tumor stem cells

    Get PDF
    Analyses of genome orthologs in cancer on the background of tumor heterogeneity, coupled with the recent identification that the tumor propagating capacity resides within a very small fraction of cells (the tumor stem cells-TSCs), has not been achieved. Here, we describe a strategy to explore genetic drift in the mitochondrial genome accompanying varying stem cell dynamics in epithelial ovarian cancer. A major and novel outcome is the identification of a specific mutant mitochondrial DNA profile associated with the TSC lineage that is drastically different from the germ line profile. This profile, however, is often camouflaged in the primary tumor, and sometimes may not be detected even after metastases, questioning the validity of whole tumor profiling towards determining individual prognosis. Continuing mutagenesis in subsets with a mutant mitochondrial genome could result in transformation through a cooperative effect with nuclear genes - a representative example in our study is a tumor suppressor gene viz. cAMP responsive element binding binding protein. This specific profile could be a critical predisposing step undertaken by a normal stem cell to overcome a tightly regulated mutation rate and DNA repair in its evolution towards tumorigenesis. Our findings suggest that varying stem cell dynamics and mutagenesis define TSC progression that may clinically translate into increasing tumor aggression with serious implications for prognosis

    Network connectivity during mergers and growth: optimizing the addition of a module

    Full text link
    The principal eigenvalue λ\lambda of a network's adjacency matrix often determines dynamics on the network (e.g., in synchronization and spreading processes) and some of its structural properties (e.g., robustness against failure or attack) and is therefore a good indicator for how ``strongly'' a network is connected. We study how λ\lambda is modified by the addition of a module, or community, which has broad applications, ranging from those involving a single modification (e.g., introduction of a drug into a biological process) to those involving repeated additions (e.g., power-grid and transit development). We describe how to optimally connect the module to the network to either maximize or minimize the shift in λ\lambda, noting several applications of directing dynamics on networks.Comment: 7 pages, 5 figure
    • …
    corecore