7 research outputs found
The Cerebellum Is Related to Cognitive Dysfunction in White Matter Hyperintensities
ObjectiveWhite matter hyperintensities (WMHs) on magnetic resonance imaging (MRI) is frequently presumed to be secondary to cerebral small vessel disease (CSVD) and associated with cognitive decline. The cerebellum plays a key role in cognition and has dense connections with other brain regions. Thus, the aim of this study was to investigate if cerebellar abnormalities could occur in CSVD patients with WMHs and the possible association with cognitive performances.MethodsA total of 104 right-handed patients with WMHs were divided into the mild WMHs group (n = 39), moderate WMHs group (n = 37), and severe WMHs group (n = 28) according to the Fazekas scale, and 36 healthy controls were matched for sex ratio, age, education years, and acquired resting-state functional MRI. Analysis of voxel-based morphometry of gray matter volume (GMV) and seed-to-whole-brain functional connectivity (FC) was performed from the perspective of the cerebellum, and their correlations with neuropsychological variables were explored.ResultsThe analysis revealed a lower GMV in the bilateral cerebellum lobule VI and decreased FC between the left- and right-sided cerebellar lobule VI with the left anterior cingulate gyri in CSVD patients with WMHs. Both changes in structure and function were correlated with cognitive impairment in patients with WMHs.ConclusionOur study revealed damaged GMV and FC in the cerebellum associated with cognitive impairment. This indicates that the cerebellum may play a key role in the modulation of cognitive function in CSVD patients with WMHs
The Montreal cognitive assessment: normative data from a large, population-based sample of Chinese healthy adults and validation for detecting vascular cognitive impairment
BackgroundThe Montreal Cognitive Assessment (MoCA) is a valuable tool for detecting cognitive impairment, widely used in many countries. However, there is still a lack of large sample normative data and whose cut-off values for detecting cognitive impairment is considerable controversy.MethodsThe assessment conducted in this study utilizes the MoCA scale, specifically employing the Mandarin-8.1 version. This study recruited a total of 3,097 healthy adults aged over 20 years. We performed multiple linear regression analysis, incorporating age, gender, and education level as predictor variables, to examine their associations with the MoCA total score and subdomain scores. Subsequently, we established normative values stratified by age and education level. Finally, we included 242 patients with vascular cognitive impairment (VCI) and 137 controls with normal cognition, and determined the optimal cut-off value of VCI through ROC curves.ResultsThe participants in this study exhibit a balanced gender distribution, with an average age of 54.46 years (SD = 14.38) and an average education period of 9.49 years (SD = 4.61). The study population demonstrates an average MoCA score of 23.25 points (SD = 4.82). The multiple linear regression analysis indicates that MoCA total score is influenced by age and education level, collectively accounting for 46.8% of the total variance. Higher age and lower education level are correlated with lower MoCA total scores. A score of 22 is the optimal cut-off value for diagnosing vascular cognitive impairment (VCI).ConclusionThis study offered normative MoCA values specific to the Chinese adults. Furthermore, this study indicated that a score of 26 may not represent the most optimal cut-off value for VCI. And for detecting VCI, a score of 22 may be a better cut-off value
Different Dynamic Nodal Properties Contribute to Cognitive Impairment in Patients with White Matter Hyperintensities
White matter hyperintensities (WMHs) are commonly observed in older adults and are associated with cognitive impairment. Although previous studies have found abnormal functional connectivities in patients with WMHs based on static functional magnetic resonance imaging (fMRI), the topological properties in the context of brain dynamics remain relatively unexplored. Herein, we explored disrupted dynamic topological properties of functional network connectivity in patients with WMHs and its relationship with cognitive impairment. We included 36 healthy controls (HC) and 104 patients with mild WMHs (n = 39), moderate WMHs (n = 37), and severe (n = 28) WMHs. The fMRI data of all participants were analyzed using Anatomical Automatic Labeling (AAL) and a sliding-window approach to generate dynamic functional connectivity matrics. Then, graph theory methods were applied to calculate the topological properties. Comprehensive neuropsychological scales were used to assess cognitive functions. Relationships between cognitive functions and abnormal dynamic topological properties were evaluated by Pearson’s correlation. We found that the patients with WMHs had higher temporal variability in regional properties, including betweenness centrality, nodal efficiencies, and nodal clustering coefficient. Furthermore, we found that the degree of centrality was related to executive function and memory, and the local coefficient correlated to executive function. Our results indicate that patients with WMHs have higher temporal variabilities in regional properties and are associated with executive and memory function