7,529 research outputs found
Ground Band and a Generalized GP-equation for Spinor Bose-Einstein Condensates
For the spinor Bose-Einstein condensates both the total spin and its
Z-component should be conserved. However, in existing theories, only
the conservation of has been taken into account. To remedy, this paper
is the first attempt to take the conservation of both and into
account. For this purpose, a total spin-state with the good quantum numbers
and is introduced in the trial wave function, thereby a generalized
Gross-Pitaevskii equation has been derived. With this new equation, the ground
bands of the Na and Rb condensates have been studied, where the
levels distinct in split. It was found that the level density is extremely
dense in the bottom of the ground band of Na, i.e., in the vicinity of
the ground state. On the contrary, for Rb, the levels are extremely
dense in the top of the ground band,Comment: 7 page, 5 figure
Two-body scattering in a trap and a special periodic phenomenon sensitive to the interaction
Two-body scattering of neutral particles in a trap is studied theoretically.
The control of the initial state is realized by using optical traps. The
collisions inside the trap occur repeatedly; thereby the effect of interaction
can be accumulated. Two periodic phenomena with a shorter and a much longer
period, respectively, are found. The latter is sensitive to the interaction.
Instead of measuring the differential cross section as usually does, the
measurement of the longer period and the details of the periodic behavior might
be a valid source of information on weak interactions among neutral particles.Comment: 5 pages, 5 figure
Repeating head-on collisions in an optical trap and the evaluation of spin-dependent interactions among neutral particles
A dynamic process of repeating collisions of a pair of trapped neutral
particles with weak spin-dependent interaction is designed and studied. Related
theoretical derivation and numerical calculation have been performed to study
the inherent coordinate-spin and momentum-spin correlation. Due to the
repeating collisions the effect of the weak interaction can be accumulated and
enlarged, and therefore can be eventually detected. Numerical results suggest
that the Cr-Cr interaction, which has not yet been completely clear, could be
thereby determined. The design can be in general used to determine various
interactions among neutral atoms and molecules, in particular for the
determination of very weak forces.Comment: 15 pages, 7 figure
Superconductivity mediated by the antiferromagnetic spin-wave in chalcogenide iron-base superconductors
The ground state of KFeSe and other iron-based
selenide superconductors are doped antiferromagnetic semiconductors. There are
well defined iron local moments whose energies are separated from those of
conduction electrons by a large band gap in these materials. We propose that
the low energy physics of this system is governed by a model Hamiltonian of
interacting electrons with on-site ferromagnetic exchange interactions and
inter-site superexchange interactions. We have derived the effective pairing
potential of electrons under the linear spin-wave approximation and shown that
the superconductivity can be driven by mediating coherent spin wave excitations
in these materials. Our work provides a natural account for the coexistence of
superconducting and antiferromagnetic long range orders observed by neutron
scattering and other experiments.Comment: 4 pages, 3 figure
First excited band of a spinor Bose-Einstein condensate
The analytical expression of the fractional parentage coefficients for the
total spin-states of a spinor N-boson system has been derived. Thereby an
S-conserved theory for the spinor Bose-Einstein condensation has been proposed.
A set of equations has been established to describe the first excited band of
the condensates. Numerical solution for Na has been given as an example.Comment: 6 pages, 3 figure
- …