18,185 research outputs found

    Transport of overdamped Brownian particles in a two-dimensional tube: Nonadiabatic regime

    Full text link
    Transport of overdamped Brownian particles in a two-dimensional asymmetric tube is investigated in the presence of nonadiabatic periodic driving forces. By using Brownian dynamics simulations we can find that the phenomena in nonadiabatic regime differ from that in adiabatic case. The direction of the current can be reversed by tuning the driving frequency. Remarkably, the current as a function of the driving amplitude exhibits several local maxima at finite driving frequency.Comment: 10 pages, 4 figure

    The Third Law of Quantum Thermodynamics in the Presence of Anomalous Couplings

    Full text link
    The quantum thermodynamic functions of a harmonic oscillator coupled to a heat bath through velocity-dependent coupling are obtained analytically. It is shown that both the free energy and the entropy decay fast with the temperature in relation to that of the usual coupling from. This implies that the velocity-dependent coupling helps to ensure the third law of thermodynamics.Comment: 4 pages, 3 figures, 22 conference

    Tree-level Split Helicity Amplitudes in Ambitwistor Space

    Full text link
    We study all tree-level split helicity gluon amplitudes by using the recently proposed BCFW recursion relation and Hodges diagrams in ambitwistor space. We pick out the contributing diagrams and find that all of them can be divided into triangles in a suitable way. We give the explicit expressions for all of these amplitudes. As an example, we reproduce the six gluon split NMHV amplitudes in momentum space.Comment: 20 pages, 16 figures; minor changes; clarifications added, 22 pages, 16 figure

    Categorification of quantum symmetric pairs I

    Get PDF
    We categorify a coideal subalgebra of the quantum group of sl2r+1\mathfrak{sl}_{2r+1} by introducing a 22-category \`a la Khovanov-Lauda-Rouquier, and show that self-dual indecomposable 11-morphisms categorify the canonical basis of this algebra. This allows us to define a categorical action of this coideal algebra on the categories of modules over cohomology rings of partial flag varieties and on the BGG category O\mathcal{O} of type B/C.Comment: final version, to appear in Quantum Topolog

    Radio Frequency Interference Mitigation

    Full text link
    Radio astronomy observational facilities are under constant upgradation and development to achieve better capabilities including increasing the time and frequency resolutions of the recorded data, and increasing the receiving and recording bandwidth. As only a limited spectrum resource has been allocated to radio astronomy by the International Telecommunication Union, this results in the radio observational instrumentation being inevitably exposed to undesirable radio frequency interference (RFI) signals which originate mainly from terrestrial human activity and are becoming stronger with time. RFIs degrade the quality of astronomical data and even lead to data loss. The impact of RFIs on scientific outcome is becoming progressively difficult to manage. In this article, we motivate the requirement for RFI mitigation, and review the RFI characteristics, mitigation techniques and strategies. Mitigation strategies adopted at some representative observatories, telescopes and arrays are also introduced. We also discuss and present advantages and shortcomings of the four classes of RFI mitigation strategies, applicable at the connected causal stages: preventive, pre-detection, pre-correlation and post-correlation. The proper identification and flagging of RFI is key to the reduction of data loss and improvement in data quality, and is also the ultimate goal of developing RFI mitigation techniques. This can be achieved through a strategy involving a combination of the discussed techniques in stages. Recent advances in high speed digital signal processing and high performance computing allow for performing RFI excision of large data volumes generated from large telescopes or arrays in both real time and offline modes, aiding the proposed strategy.Comment: 26 pages, 10 figures, Chinese version accepted for publication in Acta Astronomica Sinica; English version to appear in Chinese Astronomy and Astrophysic

    Facilitated movement of inertial Brownian motors driven by a load under an asymmetric potential

    Full text link
    Based on recent work [L. Machura, M. Kostur, P. Talkner, J. Luczka, and P. Hanggi, Phys. Rev. Lett. 98, 040601 (2007)], we extend the study of inertial Brownian motors to the case of an asymmetric potential. It is found that some transport phenomena appear in the presence of an asymmetric potential. Within tailored parameter regimes, there exists two optimal values of the load at which the mean velocity takes its maximum, which means that a load can facilitate the transport in the two parameter regimes. In addition, the phenomenon of multiple current reversals can be observed when the load is increased.Comment: 7 pages, 3 figure

    Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow

    Full text link
    In this paper, we prove the energy diminishing of a normalized gradient flow which provides a mathematical justification of the imaginary time method used in physical literatures to compute the ground state solution of Bose-Einstein condensates (BEC). We also investigate the energy diminishing property for the discretization of the normalized gradient flow. Two numerical methods are proposed for such discretizations: one is the backward Euler centered finite difference (BEFD), the other one is an explicit time-splitting sine-spectral (TSSP) method. Energy diminishing for BEFD and TSSP for linear case, and monotonicity for BEFD for both linear and nonlinear cases are proven. Comparison between the two methods and existing methods, e.g. Crank-Nicolson finite difference (CNFD) or forward Euler finite difference (FEFD), shows that BEFD and TSSP are much better in terms of preserving energy diminishing property of the normalized gradient flow. Numerical results in 1d, 2d and 3d with magnetic trap confinement potential, as well as a potential of a stirrer corresponding to a far-blue detuned Gaussian laser beam are reported to demonstrate the effectiveness of BEFD and TSSP methods. Furthermore we observe that the normalized gradient flow can also be applied directly to compute the first excited state solution in BEC when the initial data is chosen as an odd function.Comment: 28 pages, 6 figure

    Discovery of Radio Emission from the Tight M8 Binary: LP 349-25

    Get PDF
    We present radio observations of 8 ultracool dwarfs with a narrow spectral type range (M8-M9.5) using the Very Large Array at 8.5 GHz. Only the tight M8 binary LP 349-25 was detected. LP 349-25 is the tenth ultracool dwarf system detected in radio and its trigonometric parallax pi = 67.6 mas, recently measured by Gatewood et al., makes it the furthest ultracool system detected by the Very Large Array to date, and the most radio-luminous outside of obvious flaring activity or variability. With a separation of only 1.8 AU, masses of the components of LP 349-25 can be measured precisely without any theoretical assumptions (Forveille et al.), allowing us to clarify their fully-convective status and hence the kind of magnetic dynamo in these components which may play an important role to explain our detection of radio emission from these objects. This also makes LP 349-25 an excellent target for further studies with better constraints on the correlations between X-ray, radio emission and stellar parameters such as mass, age, temperature, and luminosity in ultracool dwarfs.Comment: accepted by ApJ, referee's comments included, typo in equation 1 correcte
    corecore