20 research outputs found
Five-year oncological outcomes after selective neoadjuvant radiotherapy for resectable rectal cancer
Detection of tuberculosis in HIV-infected and-uninfected African adults using whole blood RNA expression signatures: a case-control study
Background: A major impediment to tuberculosis control in Africa is the difficulty in diagnosing active tuberculosis (TB), particularly in the context of HIV infection. We hypothesized that a unique host blood RNA transcriptional signature would distinguish TB from other diseases (OD) in HIV-infected and -uninfected patients, and that this could be the basis of a simple diagnostic test. Methods and Findings: Adult case-control cohorts were established in South Africa and Malawi of HIV-infected or -uninfected individuals consisting of 584 patients with either TB (confirmed by culture of Mycobacterium tuberculosis [M.TB] from sputum or tissue sample in a patient under investigation for TB), OD (i.e., TB was considered in the differential diagnosis but then excluded), or healthy individuals with latent TB infection (LTBI). Individuals were randomized into training (80%) and test (20%) cohorts. Blood transcriptional profiles were assessed and minimal sets of significantly differentially expressed transcripts distinguishing TB from LTBI and OD were identified in the training cohort. A 27 transcript signature distinguished TB from LTBI and a 44 transcript signature distinguished TB from OD. To evaluate our signatures, we used a novel computational method to calculate a disease risk score (DRS) for each patient. The classification based on this score was first evaluated in the test cohort, and then validated in an independent publically available dataset (GSE19491). In our test cohort, the DRS classified TB from LTBI (sensitivity 95%, 95% CI [87–100]; specificity 90%, 95% CI [80–97]) and TB from OD (sensitivity 93%, 95% CI [83–100]; specificity 88%, 95% CI [74–97]). In the independent validation cohort, TB patients were distinguished both from LTBI individuals (sensitivity 95%, 95% CI [85–100]; specificity 94%, 95% CI [84–100]) and OD patients (sensitivity 100%, 95% CI [100–100]; specificity 96%, 95% CI [93–100]). Limitations of our study include the use of only culture confirmed TB patients, and the potential that TB may have been misdiagnosed in a small proportion of OD patients despite the extensive clinical investigation used to assign each patient to their diagnostic group. Conclusions: In our study, blood transcriptional signatures distinguished TB from other conditions prevalent in HIV-infected and -uninfected African adults. Our DRS, based on these signatures, could be developed as a test for TB suitable for use in HIV endemic countries. Further evaluation of the performance of the signatures and DRS in prospective populations of patients with symptoms consistent with TB will be needed to define their clinical value under operational conditions
Diagnosis of childhood tuberculosis and host RNA expression in Africa
Improved diagnostic tests for tuberculosis in children are needed. We hypothesized that transcriptional signatures of host blood could be used to distinguish tuberculosis from other diseases in African children who either were or were not infected with the human immunodeficiency virus (HIV
Total synthesis of the Amaryllidaceae alkaloid clivonine
Two syntheses of the Amaryllidaceae alkaloid clivonine (1) are described. Both employ previously reported 7-arylhydrindane 6 as an intermediate but differ in the method employed for subsequent introduction of what becomes the ring-B lactone carbonyl carbon (C7). The synthesis featuring a Bischler–Napieralski reaction for this transformation constitutes the first asymmetric synthesis of natural (+)-clivonine. Crystal structures for compounds (±)-13, (±)-16, (−)-20 and (±)-28 are also reported
Can Animal Models of Disease Reliably Inform Human Studies?
H. Bart van der Worp and colleagues discuss the controversies and possibilities of translating the results of animal experiments into human clinical trials
The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy
Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations.
Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves.
Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p 90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score.
Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care
Detection of Tuberculosis in HIV-Infected and -Uninfected African Adults Using Whole Blood RNA Expression Signatures: A Case-Control Study
BACKGROUND: A major impediment to tuberculosis control in Africa is the difficulty in diagnosing active tuberculosis (TB), particularly in the context of HIV infection. We hypothesized that a unique host blood RNA transcriptional signature would distinguish TB from other diseases (OD) in HIV-infected and -uninfected patients, and that this could be the basis of a simple diagnostic test. METHODS AND FINDINGS: Adult case-control cohorts were established in South Africa and Malawi of HIV-infected or -uninfected individuals consisting of 584 patients with either TB (confirmed by culture of Mycobacterium tuberculosis [M.TB] from sputum or tissue sample in a patient under investigation for TB), OD (i.e., TB was considered in the differential diagnosis but then excluded), or healthy individuals with latent TB infection (LTBI). Individuals were randomized into training (80%) and test (20%) cohorts. Blood transcriptional profiles were assessed and minimal sets of significantly differentially expressed transcripts distinguishing TB from LTBI and OD were identified in the training cohort. A 27 transcript signature distinguished TB from LTBI and a 44 transcript signature distinguished TB from OD. To evaluate our signatures, we used a novel computational method to calculate a disease risk score (DRS) for each patient. The classification based on this score was first evaluated in the test cohort, and then validated in an independent publically available dataset (GSE19491). In our test cohort, the DRS classified TB from LTBI (sensitivity 95%, 95% CI [87-100]; specificity 90%, 95% CI [80-97]) and TB from OD (sensitivity 93%, 95% CI [83-100]; specificity 88%, 95% CI [74-97]). In the independent validation cohort, TB patients were distinguished both from LTBI individuals (sensitivity 95%, 95% CI [85-100]; specificity 94%, 95% CI [84-100]) and OD patients (sensitivity 100%, 95% CI [100-100]; specificity 96%, 95% CI [93-100]). Limitations of our study include the use of only culture confirmed TB patients, and the potential that TB may have been misdiagnosed in a small proportion of OD patients despite the extensive clinical investigation used to assign each patient to their diagnostic group. CONCLUSIONS: In our study, blood transcriptional signatures distinguished TB from other conditions prevalent in HIV-infected and -uninfected African adults. Our DRS, based on these signatures, could be developed as a test for TB suitable for use in HIV endemic countries. Further evaluation of the performance of the signatures and DRS in prospective populations of patients with symptoms consistent with TB will be needed to define their clinical value under operational conditions. Please see later in the article for the Editors' Summary
Classification using the disease risk score on the test cohort and validation dataset.
<p>Disease risk score and receiver operating characteristic curves based on the TB/LTBI 27 transcript signature (A/B) and the TB/OD 44 transcript signature (C/D) applied to the South African (SA)/Malawi HIV+/− test cohort (A/C) (<i>n</i><sub>TB</sub> = 37 <i>n</i><sub>LTBI</sub> = 39/<i>n</i><sub>TB</sub> = 42 <i>n</i><sub>OD</sub> = 34) and independent validation dataset comprising South African patients (B/D) (<i>n</i><sub>TB</sub> = 20 <i>n</i><sub>LTBI</sub> = 31 <i>n</i><sub>OD</sub> = 82). Sensitivity, specificity are reported in <a href="http://www.plosmedicine.org/article/info:doi/10.1371/journal.pmed.1001538#pmed-1001538-t003" target="_blank">Table 3</a>. HIV+, HIV-infected; HIV−, HIV-uninfected. Classification cut-offs: (A) 138.98; (B) 107.76; (C) 154.44; (D) 99.94.</p
Heatmaps showing clustering of training and test cohorts using transcriptional signatures.
<p>Clustering of training (A/C) and test (B/D) cohorts using transcripts identified by elastic net for TB versus LTBI (A/B) and TB versus OD (C/D) (training: <i>n</i><sub>TB</sub> = 157 <i>n</i><sub>LTBI</sub> = 128/<i>n</i><sub>TB</sub> = 153 <i>n</i><sub>OD</sub> = 140, test: <i>n</i><sub>TB</sub> = 37 <i>n</i><sub>LTBI</sub> = 39/<i>n</i><sub>TB</sub> = 42 <i>n</i><sub>OD</sub> = 34). Rows are transcripts (transcripts shown in red are up-regulated, those in green are down-regulated) and columns are patients regardless of HIV status (purple, patients with TB; green, patients with LTBI; light blue, patients with OD).</p