66 research outputs found

    Genomic epidemiology reveals multiple introductions of Zika virus into the United States

    Get PDF
    Zika virus (ZIKV) is causing an unprecedented epidemic linked to severe congenital abnormalities. In July 2016, mosquito-borne ZIKV transmission was reported in the continental United States; since then, hundreds of locally acquired infections have been reported in Florida. To gain insights into the timing, source, and likely route(s) of ZIKV introduction, we tracked the virus from its first detection in Florida by sequencing ZIKV genomes from infected patients and Aedes aegypti mosquitoes. We show that at least 4 introductions, but potentially as many as 40, contributed to the outbreak in Florida and that local transmission is likely to have started in the spring of 2016-several months before its initial detection. By analysing surveillance and genetic data, we show that ZIKV moved among transmission zones in Miami. Our analyses show that most introductions were linked to the Caribbean, a finding corroborated by the high incidence rates and traffic volumes from the region into the Miami area. Our study provides an understanding of how ZIKV initiates transmission in new regions

    Integrated dataset of screening hits against multiple neglected disease pathogens.

    Get PDF
    New chemical entities are desperately needed that overcome the limitations of existing drugs for neglected diseases. Screening a diverse library of 10,000 drug-like compounds against 7 neglected disease pathogens resulted in an integrated dataset of 744 hits. We discuss the prioritization of these hits for each pathogen and the strong correlation observed between compounds active against more than two pathogens and mammalian cell toxicity. Our work suggests that the efficiency of early drug discovery for neglected diseases can be enhanced through a collaborative, multi-pathogen approach

    Genome sequencing reveals Zika virus diversity and spread in the Americas

    Get PDF
    Although the recent Zika virus (ZIKV) epidemic in the Americas and its link to birth defects have attracted a great deal of attention, much remains unknown about ZIKV disease epidemiology and ZIKV evolution, in part owing to a lack of genomic data. Here we address this gap in knowledge by using multiple sequencing approaches to generate 110 ZIKV genomes from clinical and mosquito samples from 10 countries and territories, greatly expanding the observed viral genetic diversity from this outbreak. We analysed the timing and patterns of introductions into distinct geographic regions; our phylogenetic evidence suggests rapid expansion of the outbreak in Brazil and multiple introductions of outbreak strains into Puerto Rico, Honduras, Colombia, other Caribbean islands, and the continental United States. We find that ZIKV circulated undetected in multiple regions for many months before the first locally transmitted cases were confirmed, highlighting the importance of surveillance of viral infections. We identify mutations with possible functional implications for ZIKV biology and pathogenesis, as well as those that might be relevant to the effectiveness of diagnostic tests

    Prevention of viral drug resistance by novel combination therapy

    Get PDF
    A new form of antiviral clinical therapy is proposed in which three different drugs are administered against three different targets on the same virus-coded protein. If the physiological functions of the three different target sites are not independent of each other, then a mutation conferring drug resistance at one site may alter the physiological functions at the other sites and further drug resistance may not arise. The adenovirus proteinase, with its two cofactors that act synergistically on enzyme activity, may be a good model system within which to test the efficacy of this form of combination therapy

    A new form of antiviral combination therapy predicted to prevent resistance from arising,and a model system to test it

    No full text
    Combination therapy in the treatment of viral infections in which, for example, three different drugs against three different targets on three independent proteins are administered, has been highly successful clinically. However, it is only a matter of time before a virus will arise resistant to all three drugs, because the mutations leading to drug resistance are independent of each other. But, what if the mutations leading to drug resistance are not independent of each other, but confer some cost to the virus? If the cost is too great, than resistance may not arise. To impose such a cost in the clinical treatment of viral infections, we propose a new form of combination therapy. Here, three different drugs against three different targets on the same virus-coded protein are administered. If the physiological functions of the three different target sites are not independent of each other, then, a mutation at one site may alter the physiological functions at the other sites. We present a model system in which to test the efficacy of this new form of triple combination therapy. Human adenovirus has a virus-coded proteinase that is essential for the synthesis of infectious virus. It contains an active site and two cofactor binding sites the functions of the active site are dependent upon the cofactors interacting with their binding sites. We describe how to obtain drugs against the three different sites

    Interaction of the human adenovirus proteinase with its11-amino acid cofactor pVIc

    No full text
    The interaction of the human adenovirus proteinase (AVP) and AVP−DNA complexes with the 11-amino acid cofactor pVIc was characterized. The equilibrium dissociation constant for the binding of pVIc to AVP was 4.4 μM. The binding of AVP to 12-mer single-stranded DNA decreased the Kd for the binding of pVIc to AVP to 0.09 μM. The pVIc−AVP complex hydrolyzed the substrate with a Michaelis constant (Km) of 3.7 μM and a catalytic rate constant (kcat) of 1.1 s-1. In the presence of DNA, the Km increased less than 2-fold, and the kcat increased 3-fold. Alanine-scanning mutagenesis was performed to determine the contribution of individual pVIc side chains in the binding and stimulation of AVP. Two amino acid residues, Gly1‘ and Phe11‘, were the major determinants in the binding of pVIc to AVP, while Val2‘ and Phe11‘ were the major determinants in stimulating enzyme activity. Binding of AVP to DNA greatly suppressed the effects of the alanine substitutions on the binding of mutant pVIcs to AVP. Binding of either or both of the cofactors, pVIc or the viral DNA, to AVP did not dramatically alter its secondary structure as determined by vacuum ultraviolet circular dichroism. pVIc, when added to Hep-2 cells infected with adenovirus serotype 5, inhibited the synthesis of infectious virus, presumably by prematurely activating the proteinase so that it cleaved virion precursor proteins before virion assembly, thereby aborting the infection
    • …
    corecore