11,676 research outputs found
Effective potential for composite operators and for an auxiliary scalar field in a Nambu-Jona-Lasinio model
We derive the effective potentials for composite operators in a
Nambu-Jona-Lasinio (NJL) model at zero and finite temperature and show that in
each case they are equivalent to the corresponding effective potentials based
on an auxiliary scalar field. The both effective potentials could lead to the
same possible spontaneous breaking and restoration of symmetries including
chiral symmetry if the momentum cutoff in the loop integrals is large enough,
and can be transformed to each other when the Schwinger-Dyson (SD) equation of
the dynamical fermion mass from the fermion-antifermion vacuum (or thermal)
condensates is used. The results also generally indicate that two effective
potentials with the same single order parameter but rather different
mathematical expressions can still be considered physically equivalent if the
SD equation corresponding to the extreme value conditions of the two potentials
have the same form.Comment: 7 pages, no figur
Limits to compression with cascaded quadratic soliton compressors
We study cascaded quadratic soliton compressors and address the physical
mechanisms that limit the compression. A nonlocal model is derived, and the
nonlocal response is shown to have an additional oscillatory component in the
nonstationary regime when the group-velocity mismatch (GVM) is strong. This
inhibits efficient compression. Raman-like perturbations from the cascaded
nonlinearity, competing cubic nonlinearities, higher-order dispersion, and
soliton energy may also limit compression, and through realistic numerical
simulations we point out when each factor becomes important. We find that it is
theoretically possible to reach the single-cycle regime by compressing
high-energy fs pulses for wavelengths in a
-barium-borate crystal, and it requires that the system is in the
stationary regime, where the phase mismatch is large enough to overcome the
detrimental GVM effects. However, the simulations show that reaching
single-cycle duration is ultimately inhibited by competing cubic nonlinearities
as well as dispersive waves, that only show up when taking higher-order
dispersion into account.Comment: 16 pages, 5 figures, submitted to Optics Expres
Crystalline free energies of micelles of diblock copolymer solutions
We report a characterization of the relative stability and structural
behavior of various micellar crystals of an athermal model of AB-diblock
copolymers in solution. We adopt a previously devel- oped coarse-graining
representation of the chains which maps each copolymer on a soft dumbbell.
Thanks to this strong reduction of degrees of freedom, we are able to
investigate large aggregated systems, and for a specific length ratio of the
blocks f = MA/(MA + MB) = 0.6, to locate the order-disorder transition of the
system of micelles. Above the transition, mechanical and thermal properties are
found to depend on the number of particles per lattice site in the simulation
box, and the application of a recent methodology for multiple occupancy
crystals (B.M. Mladek et al., Phys. Rev. Lett. 99, 235702 (2007)) is necessary
to correctly define the equilibrium state. Within this scheme we have performed
free energy calculations at two reduced density {\rho}/{\rho}\ast = 4,5 and for
several cubic structures as FCC,BCC,A15. At both densities, the BCC symmetry is
found to correspond to the minimum of the unconstrained free energy, that is to
the stable symmetry among the few considered, while the A15 structure is almost
degenerate, indicating that the present sys- tem prefers to crystallize in less
packed structures. At {\rho}/{\rho}\ast = 4 close to melting, the Lindemann
ratio is fairly high (~ 0.29) and the concentration of vacancies is roughly 6%.
At {\rho}/{\rho}\ast = 5 the mechanical stability of the stable BCC structure
increases and the concentration of vacancies ac- cordingly decreases. The ratio
of the corona layer thickness to the core radius is found to be in good
agreement with experimental data for poly(styrene-b-isoprene)(22-12) in
isoprene selective solvent which is also reported to crystallize in the BCC
structure
Bubble generation in a twisted and bent DNA-like model
The DNA molecule is modeled by a parabola embedded chain with long-range
interactions between twisted base pair dipoles. A mechanism for bubble
generation is presented and investigated in two different configurations. Using
random normally distributed initial conditions to simulate thermal
fluctuations, a relationship between bubble generation, twist and curvature is
established. An analytical approach supports the numerical results.Comment: 7 pages, 8 figures. Accepted for Phys. Rev. E (in press
Collapse arrest and soliton stabilization in nonlocal nonlinear media
We investigate the properties of localized waves in systems governed by
nonlocal nonlinear Schrodinger type equations. We prove rigorously by bounding
the Hamiltonian that nonlocality of the nonlinearity prevents collapse in,
e.g., Bose-Einstein condensates and optical Kerr media in all physical
dimensions. The nonlocal nonlinear response must be symmetric, but can be of
completely arbitrary shape. We use variational techniques to find the soliton
solutions and illustrate the stabilizing effect of nonlocality.Comment: 4 pages with 3 figure
- …
