636 research outputs found

    A mass-balance/photochemical assessment of DMS sea-to-air flux as inferred from NASA GTE PEM-West a and B observations

    Get PDF
    This study reports dimethyl sulfide (DMS) sea-to-air fluxes derived from a mass-balance/photochemical-modeling approach. The region investigated was the western North Pacific covering the latitude range of 0°-30°N. Two NASA airborne databases were used in this study: PEM-West A in September-October 1991 and PEM-West B in February-March 1994. A total of 35 boundary layer (BL) sampling runs were recorded between the two programs. However, after filtering these data for pollution impacts and DMS lifetime considerations, this total was reduced to 13. Input for each analysis consisted of atmospheric DMS measurements, the equivalent mixing depth (EMD) for DMS, and model estimated values for OH and NO3. The evaluation of the EMD took into account both DMS within the BL as well as that transported into the overlying atmospheric buffer layer (BuL). DMS fluxes ranged from 0.6 to 3.0 μmol m-2d-1 for PEM-West A (10 sample runs) and 1.4 to 1.9 μmol m-2d-1 for PEM-West B (3 sample runs). Sensitivity analyses showed that the photochemically evaluated DMS flux was most influenced by the DMS vertical profile and the diel profile for OH. A propagation of error analysis revealed that the uncertainty associated with individual flux determinations ranged from a factor of 1.3 to 1.5. Also assessed were potential systematic errors. The first of these relates to our noninclusion of large-scale mean vertical motion as it might appear in the form of atmospheric subsidence or as a convergence. Our estimates here would place this error in the range of O to 30%. By far the largest systematic error is that associated with stochastic events (e.g., those involving major changes in cloud coverage). In the latter case, sensitivity tests suggested that the error could be as high as a factor of 2. With improvements in such areas as BL sampling time, direct observations of OH, improved DMS vertical profiling, direct assessment of vertical velocity in the field, and preflight (24 hours) detailed meteorological data, it appears that the uncertainty in this approach could be reduced to ±25%. Copyright 1999 by the American Geophysical Union

    Developing a General Method to Assess Task-Technology Fit

    Get PDF
    This research generalizes a method of assessing task- technology fit that was developed for software maintenance tasks and tools. A general instrument is developed for assessing task needs, technology characteristics, and the resulting fit for general problem solving tasks and problem-solving support tool

    Interdisciplinary study of atmospheric processes and constituents of the mid-Atlantic coastal region.

    Get PDF
    Past research projects for the year 1974-1975 are listed along with future research programs in the area of air pollution control, remote sensor analysis of smoke plumes, the biosphere component, and field experiments. A detailed budget analysis is presented. Attachments are included on the following topics: mapping forest vegetation with ERTS-1 MSS data and automatic data processing techniques, and use of LARS system for the quantitative determination of smoke plume lateral diffusion coefficients from ERTS images of Virginia
    • …
    corecore