266 research outputs found
Planck 2015 results: I. Overview of products and scientific results
The European Space Agency's Planck satellite, which is dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013. In February 2015, ESA and the Planck Collaboration released the second set of cosmology products based ondata from the entire Planck mission, including both temperature and polarization, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the main characteristics of the data and the data products in the release, as well as the associated cosmological and astrophysical science results and papers. The data products include maps of the cosmic microwave background (CMB), the thermal Sunyaev-Zeldovich effect, diffuse foregrounds in temperature and polarization, catalogues of compact Galactic and extragalactic sources (including separate catalogues of Sunyaev-Zeldovich clusters and Galactic cold clumps), and extensive simulations of signals and noise used in assessing uncertainties and the performance of the analysis methods. The likelihood code used to assess cosmological models against the Planck data is described, along with a CMB lensing likelihood. Scientific results include cosmological parameters derived from CMB power spectra, gravitational lensing, and cluster counts, as well as constraints on inflation, non-Gaussianity, primordial magnetic fields, dark energy, and modified gravity, and new results on low-frequency Galactic foregrounds
Recommended from our members
Planck intermediate results: LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
The six parameters of the standard ΛCDM model have best-fit values derived from the Planck temperature power spectrum that are shifted somewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the Planck temperature power spectrum at angular scales that had never before been measured to cosmic-variance level precision. We have investigated these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium, the baryon density ω b , the matter density ω m , the angular size of the sound horizon the spectral index of the primordial power spectrum, n s , and A s e -2τ (where A s is the amplitude of the primordial power spectrum), we have examined the change in best-fit values between a WMAP-like large angular-scale data set (with multipole moment 800, or splitting at a different multipole, yields similar results. We examined the 800 power spectrum data and find that the features there that drive these shifts are a set of oscillations across a broad range of angular scales. Although they partly appear similar to the effects of enhanced gravitational lensing, the shifts in ΛCDM parameters that arise in response to these features correspond to model spectrum changes that are predominantly due to non-lensing effects; the only exception is, which, at fixed A s e -2τ , affects the > 800 temperature power spectrum solely through the associated change in A s and the impact of that on the lensing potential power spectrum. We also ask, "what is it about the power spectrum at < 800 that leads to somewhat different best-fit parameters than come from the full range?" We find that if we discard the data at < 30, where there is a roughly 2σ downward fluctuation in power relative to the model that best fits the full range, the < 800 best-fit parameters shift significantly towards the < 2500 best-fit parameters. In contrast, including < 30, this previously noted "low-deficit" drives n s up and impacts parameters correlated with n s , such as ω m and H 0 . As expected, the < 30 data have a much greater impact on the < 800 best fit than on the < 2500 best fit. So although the shifts are not very significant, we find that they can be understood through the combined effects of an oscillatory-like set of high-residuals and the deficit in low-power, excursions consistent with sample variance that happen to map onto changes in cosmological parameters. Finally, we examine agreement between PlanckTT data and two other CMB data sets, namely the Planck lensing reconstruction and the TT power spectrum measured by the South Pole Telescope, again finding a lack of convincing evidence of any significant deviations in parameters, suggesting that current CMB data sets give an internally consistent picture of the ΛCDM model
Planck 2013 results. XV. CMB power spectra and likelihood
This paper presents the Planck 2013 likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations that accounts for all known relevant uncertainties, both instrumental and astrophysical in nature. We use this likelihood to derive our best estimate of the CMB angular power spectrum from Planck over three decades in multipole moment, l, covering 2 = l = 2500. The main source of uncertainty at l ? 1500 is cosmic variance. Uncertainties in small-scale foreground modelling and instrumental noise dominate the error budget at higher ls. For l < 50, our likelihood exploits all Planck frequency channels from 30 to 353 GHz, separating the cosmological CMB signal from diffuse Galactic foregrounds through a physically motivated Bayesian component separation technique. At l = 50, we employ a correlated Gaussian likelihood approximation based on a fine-grained set of angular cross-spectra derived from multiple detector combinations between the 100, 143, and 217 GHz frequency channels, marginalising over power spectrum foreground templates. We validate our likelihood through an extensive suite of consistency tests, and assess the impact of residual foreground and instrumental uncertainties on the final cosmological parameters. We find good internal agreement among the high-l cross-spectra with residuals below a few µK2 at l ? 1000, in agreement with estimated calibration uncertainties. We compare our results with foreground-cleaned CMB maps derived from all Planck frequencies, as well as with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. We further show that the best-fit ?CDM cosmology is in excellent agreement with preliminary PlanckEE and TE polarisation spectra. We find that the standard ?CDM cosmology is well constrained by Planck from the measurements at l ? 1500. One specific example is the spectral index of scalar perturbations, for which we report a 5.4s deviation from scale invariance, ns = 1. Increasing the multipole range beyond l ? 1500 does not increase our accuracy for the ?CDM parameters, but instead allows us to study extensions beyond the standard model. We find no indication of significant departures from the ?CDM framework. Finally, we report a tension between the Planck best-fit ?CDM model and the low-l spectrum in the form of a power deficit of 5–10% at l ? 40, with a statistical significance of 2.5–3s. Without a theoretically motivated model for this power deficit, we do not elaborate further on its cosmological implications, but note that this is our most puzzling finding in an otherwise remarkably consistent data set
Recommended from our members
Planck intermediate results: XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth
© 2016 ESO. This paper describes the identification, modelling, and removal of previously unexplained systematic effects in the polarization data of the Planck High Frequency Instrument (HFI) on large angular scales, including new mapmaking and calibration procedures, new and more complete end-to-end simulations, and a set of robust internal consistency checks on the resulting maps. These maps, at 100, 143, 217, and 353 GHz, are early versions of those that will be released in final form later in 2016. The improvements allow us to determine the cosmic reionization optical depth τ using, for the first time, the low-multipole EE data from HFI, reducing significantly the central value and uncertainty, and hence the upper limit. Two different likelihood procedures are used to constrain τ from two estimators of the CMB E-and B-mode angular power spectra at 100 and 143 GHz, after debiasing the spectra from a small remaining systematic contamination. These all give fully consistent results. A further consistency test is performed using cross-correlations derived from the Low Frequency Instrument maps of the Planck 2015 data release and the new HFI data. For this purpose, end-to-end analyses of systematic effects from the two instruments are used to demonstrate the near independence of their dominant systematic error residuals. The tightest result comes from the HFI-based τ posterior distribution using the maximum likelihood power spectrum estimator from EE data only, giving a value 0.055 ± 0.009. In a companion paper these results are discussed in the context of the best-fit PlanckΛCDM cosmological model and recent models of reionization
Detection of Polarization in the Cosmic Microwave Background using DASI
We report the detection of polarized anisotropy in the Cosmic Microwave
Background radiation with the Degree Angular Scale Interferometer (DASI),
located at the Amundsen-Scott South Pole research station. Observations in all
four Stokes parameters were obtained within two 3.4 FWHM fields separated by
one hour in Right Ascension. The fields were selected from the subset of fields
observed with DASI in 2000 in which no point sources were detected and are
located in regions of low Galactic synchrotron and dust emission. The
temperature angular power spectrum is consistent with previous measurements and
its measured frequency spectral index is -0.01 (-0.16 -- 0.14 at 68%
confidence), where 0 corresponds to a 2.73 K Planck spectrum. The power
spectrum of the detected polarization is consistent with theoretical
predictions based on the interpretation of CMB anisotropy as arising from
primordial scalar adiabatic fluctuations. Specifically, E-mode polarization is
detected at high confidence (4.9 sigma). Assuming a shape for the power
spectrum consistent with previous temperature measurements, the level found for
the E-mode polarization is 0.80 (0.56 -- 1.10), where the predicted level given
previous temperature data is 0.9 -- 1.1. At 95% confidence, an upper limit of
0.59 is set to the level of B-mode polarization with the same shape and
normalization as the E-mode spectrum. The TE correlation of the temperature and
E-mode polarization is detected at 95% confidence, and also found to be
consistent with predictions. These results provide strong validation of the
underlying theoretical framework for the origin of CMB anisotropy and lend
confidence to the values of the cosmological parameters that have been derived
from CMB measurements.Comment: 20 pages, 6 figure
Recommended from our members
Planck 2015 results: XXVI. The Second Planck Catalogue of Compact Sources
The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalogue. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and, RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. We are grateful to the H-ATLAS Executive Committee and primarily to the PIs, S. Eales and L. Dunne, for permission to use the unpublished H-ATLAS catalogue for the validation of the present catalogue. This research has made use of the “Aladin sky atlas” (Bonnarel et al. 2000), developed at CDS, Strasbourg Observatory, France. Part of this work was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), provided by Dell Inc. using Strategic Research Infrastructure Funding from the HEFCE and funding from the STFC. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration
Planck intermediate results: LVII. Joint Planck LFI and HFI data processing
We present the NPIPE processing pipeline, which produces calibrated frequency maps in temperature and polarization from data from the Planck
Low Frequency Instrument (LFI) and High Frequency Instrument (HFI) using high-performance computers. NPIPE represents a natural evolution
of previous Planck analysis efforts, and combines some of the most powerful features of the separate LFI and HFI analysis pipelines. For example,
following the LFI 2018 processing procedure, NPIPE uses foreground polarization priors during the calibration stage in order to break scanninginduced degeneracies. Similarly, NPIPE employs the HFI 2018 time-domain processing methodology to correct for bandpass mismatch at all
frequencies. In addition, NPIPE introduces several improvements, including, but not limited to: inclusion of the 8% of data collected during
repointing manoeuvres; smoothing of the LFI reference load data streams; in-flight estimation of detector polarization parameters; and construction
of maximally independent detector-set split maps. For component-separation purposes, important improvements include: maps that retain the CMB
Solar dipole, allowing for high-precision relative calibration in higher-level analyses; well-defined single-detector maps, allowing for robust CO
extraction; and HFI temperature maps between 217 and 857 GHz that are binned into 0.09 pixels (Nside = 4096), ensuring that the full angular
information in the data is represented in the maps even at the highest Planck resolutions. The net effect of these improvements is lower levels of
noise and systematics in both frequency and component maps at essentially all angular scales, as well as notably improved internal consistency
between the various frequency channels. Based on the NPIPE maps, we present the first estimate of the Solar dipole determined through component
separation across all nine Planck frequencies. The amplitude is (3366.6 ± 2.7) µK, consistent with, albeit slightly higher than, earlier estimates.
From the large-scale polarization data, we derive an updated estimate of the optical depth of reionization of τ = 0.051 ± 0.006, which appears
robust with respect to data and sky cuts. There are 600 complete signal, noise and systematics simulations of the full-frequency and detector-set
maps. As a Planck first, these simulations include full time-domain processing of the beam-convolved CMB anisotropies. The release of NPIPE
maps and simulations is accompanied with a complete suite of raw and processed time-ordered data and the software, scripts, auxiliary data, and
parameter files needed to improve further on the analysis and to run matching simulations
Recommended from our members
Planck 2015 results: XVII. Constraints on primordial non-Gaussianity
The Planck full mission cosmic microwave background (CMB) temperature and E-mode polarization maps are analysed to obtain constraints on primordial non-Gaussianity (NG). Using three classes of optimal bispectrum estimators-separable template-fitting (KSW), binned, and modal-we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result from temperature alone localNL = 2.5 ± 5.7, equilNL=-16 ± 70, fNLlocal=2.5±5.7, fNLequil=-16±70, and orthoNL =-34 ± 32fNLortho=-34±33 (68% CL, statistical). Combining temperature and polarization data we obtain fNLlocal=0.8±5.0, fNLequil=-4±43, and fNLortho=-26±21localNL = 0.8 ± 5.0, equilNL=-4 ± 43, and orthoNL =-26 ± 21 (68% CL, statistical). The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are consistent with estimators based on measuring the Minkowski functionals of the CMB. The effect of time-domain de-glitching systematics on the bispectrum is negligible. In spite of these test outcomes we conservatively label the results including polarization data as preliminary, owing to a known mismatch of the noise model in simulations and the data. Beyond estimates of individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and derive constraints on early universe scenarios that generate primordial NG, including general single-field models of inflation, axion inflation, initial state modifications, models producing parity-violating tensor bispectra, and directionally dependent vector models. We present a wide survey of scale-dependent feature and resonance models, accounting for the "look elsewhere" effect in estimating the statistical significance of features. We also look for isocurvature NG, and find no signal, but we obtain constraints that improve significantly with the inclusion of polarization. The primordial trispectrum amplitude in the local model is constrained to be glocalNL = (-0.9 ± 7.7) X 104(68% CL statistical), and we perform an analysis of trispectrum shapes beyond the local case. The global picture that emerges is one of consistency with the premises of the ΛCDM cosmology, namely that the structure we observe today was sourced by adiabatic, passive, Gaussian, and primordial seed perturbations
Recommended from our members
Planck 2015 results: XIII. Cosmological parameters
We present results based on full-mission Planck observations of temperature
and polarization anisotropies of the CMB. These data are consistent with the
six-parameter inflationary LCDM cosmology. From the Planck temperature and
lensing data, for this cosmology we find a Hubble constant, H0= (67.8 +/- 0.9)
km/s/Mpc, a matter density parameter Omega_m = 0.308 +/- 0.012 and a scalar
spectral index with n_s = 0.968 +/- 0.006. (We quote 68% errors on measured
parameters and 95% limits on other parameters.) Combined with Planck
temperature and lensing data, Planck LFI polarization measurements lead to a
reionization optical depth of tau = 0.066 +/- 0.016. Combining Planck with
other astrophysical data we find N_ eff = 3.15 +/- 0.23 for the effective
number of relativistic degrees of freedom and the sum of neutrino masses is
constrained to < 0.23 eV. Spatial curvature is found to be |Omega_K| < 0.005.
For LCDM we find a limit on the tensor-to-scalar ratio of r <0.11 consistent
with the B-mode constraints from an analysis of BICEP2, Keck Array, and Planck
(BKP) data. Adding the BKP data leads to a tighter constraint of r < 0.09. We
find no evidence for isocurvature perturbations or cosmic defects. The equation
of state of dark energy is constrained to w = -1.006 +/- 0.045. Standard big
bang nucleosynthesis predictions for the Planck LCDM cosmology are in excellent
agreement with observations. We investigate annihilating dark matter and
deviations from standard recombination, finding no evidence for new physics.
The Planck results for base LCDM are in agreement with BAO data and with the
JLA SNe sample. However the amplitude of the fluctuations is found to be higher
than inferred from rich cluster counts and weak gravitational lensing. Apart
from these tensions, the base LCDM cosmology provides an excellent description
of the Planck CMB observations and many other astrophysical data sets
Planck 2018 results. VII. Isotropy and Statistics of the CMB
Analysis of the Planck 2018 data set indicates that the statistical properties of the cosmic microwave background (CMB) temperature anisotropies are in excellent agreement with previous studies using the 2013 and 2015 data releases. In particular, they are consistent with the Gaussian predictions of the CDM cosmological model, yet also confirm the presence of several so-called "anomalies" on large angular scales. The novelty of the current study, however, lies in being a first attempt at a comprehensive analysis of the statistics of the polarization signal over all angular scales, using either maps of the Stokes parameters, and , or the -mode signal derived from these using a new methodology (which we describe in an appendix). Although remarkable progress has been made in reducing the systematic effects that contaminated the 2015 polarization maps on large angular scales, it is still the case that residual systematics (and our ability to simulate them) can limit some tests of non-Gaussianity and isotropy. However, a detailed set of null tests applied to the maps indicates that these issues do not dominate the analysis on intermediate and large angular scales (i.e., ). In this regime, no unambiguous detections of cosmological non-Gaussianity, or of anomalies corresponding to those seen in temperature, are claimed. Notably, the stacking of CMB polarization signals centred on the positions of temperature hot and cold spots exhibits excellent agreement with the CDM cosmological model, and also gives a clear indication of how Planck provides state-of-the-art measurements of CMB temperature and polarization on degree scales
- …