1,784 research outputs found

    Kalman filter based range estimation for autonomous navigation using imaging sensors

    Get PDF
    Rotorcraft operating in high-threat environments fly close to the surface of the earth to utilize surrounding terrain, vegetation, or man-made objects to minimize the risk of being detected by the enemy. Two basic requirements for obstacle avoidance are detection and range estimation of the object from the current rotorcraft position. There are many approaches to the estimation of range using a sequence of images. The approach used in this analysis differes from previous methods in two significant ways: an attempt is not made to estimate the rotorcraft's motion from the images; and the interest lies in recursive algorithms. The rotorcraft parameters are assumed to be computed using an onboard inertial navigation system. Given a sequence of images, using image-object differential equations, a Kalman filter (Sridhar and Phatak, 1988) can be used to estimate both the relative coordinates and the earth coordinates of the objects on the ground. The Kalman filter can also be used in a predictive mode to track features in the images, leading to a significant reduction of search effort in the feature extraction step of the algorithm. The purpose is to summarize early results obtained in extending the Kalman filter for use with actual image sequences. The experience gained from the application of this algorithm to real images is very valuable and is a necessary step before proceeding to the estimation of range during low-altitude curvilinear flight. A simple recursive method is presented to estimate range to objects using a sequence of images. The method produces good range estimates using real images in a laboratory set up and needs to be evaluated further using several different image sequences to test its robustness. The feature generation part of the algorithm requires further refinement on the strategies to limit the number of features (Sridhar and Phatak, 1989). The extension of the work reported here to curvilinear flight may require the use of the extended Kalman filter

    Towards Autonomous Aviation Operations: What Can We Learn from Other Areas of Automation?

    Get PDF
    Rapid advances in automation has disrupted and transformed several industries in the past 25 years. Automation has evolved from regulation and control of simple systems like controlling the temperature in a room to the autonomous control of complex systems involving network of systems. The reason for automation varies from industry to industry depending on the complexity and benefits resulting from increased levels of automation. Automation may be needed to either reduce costs or deal with hazardous environment or make real-time decisions without the availability of humans. Space autonomy, Internet, robotic vehicles, intelligent systems, wireless networks and power systems provide successful examples of various levels of automation. NASA is conducting research in autonomy and developing plans to increase the levels of automation in aviation operations. This paper provides a brief review of levels of automation, previous efforts to increase levels of automation in aviation operations and current level of automation in the various tasks involved in aviation operations. It develops a methodology to assess the research and development in modeling, sensing and actuation needed to advance the level of automation and the benefits associated with higher levels of automation. Section II describes provides an overview of automation and previous attempts at automation in aviation. Section III provides the role of automation and lessons learned in Space Autonomy. Section IV describes the success of automation in Intelligent Transportation Systems. Section V provides a comparison between the development of automation in other areas and the needs of aviation. Section VI provides an approach to achieve increased automation in aviation operations based on the progress in other areas. The final paper will provide a detailed analysis of the benefits of increased automation for the Traffic Flow Management (TFM) function in aviation operations

    A parallel implementation of a multisensor feature-based range-estimation method

    Get PDF
    There are many proposed vision based methods to perform obstacle detection and avoidance for autonomous or semi-autonomous vehicles. All methods, however, will require very high processing rates to achieve real time performance. A system capable of supporting autonomous helicopter navigation will need to extract obstacle information from imagery at rates varying from ten frames per second to thirty or more frames per second depending on the vehicle speed. Such a system will need to sustain billions of operations per second. To reach such high processing rates using current technology, a parallel implementation of the obstacle detection/ranging method is required. This paper describes an efficient and flexible parallel implementation of a multisensor feature-based range-estimation algorithm, targeted for helicopter flight, realized on both a distributed-memory and shared-memory parallel computer

    Probing Noise in Gene Expression and Protein Production

    Get PDF
    We derive exact solutions of simplified models for the temporal evolution of the protein concentration within a cell population arbitrarily far from the stationary state. We show that monitoring the dynamics can assist in modeling and understanding the nature of the noise and its role in gene expression and protein production. We introduce a new measure, the cell turnover distribution, which can be used to probe the phase of transcription of DNA into messenger RNA.Comment: 10 pages, 3 figures, supplementary information on reques
    corecore