13 research outputs found

    Does robot-assisted laparoscopic radical prostatectomy enable to obtain adequate oncological and functional outcomes during the learning curve? From the Korean experience

    Get PDF
    To estimate the short-term results of robot-assisted laparoscopic radical prostatectomy (RALRP) during the learning curve, in terms of surgical, oncological and functional outcomes, we conducted a prospective survey on RALRP. From July 2007, a single surgeon performed 63 robotic prostatectomies using the same operative technique. Perioperative data, including pathological and early functional results of the patient, were collected prospectively and analyzed. Along with the accumulation of the cases, the total operative time, setup time, console time and blood loss were significantly decreased. No major complication was present in any patient. Transfusion was needed in six patients; all of them were within the initial 15 cases. The positive surgical margin rate was 9.8% (5/51) in pT2 disease. The most frequent location of positive margin in this stage was the lateral aspect (60%), but in pT3 disease multiple margins were the most frequent (41.7%). Overall, 53 (84.1%) patients had totally continent status and the median time to continence was 6.56 weeks. Among 17 patients who maintained preoperative sexual activity ( Sexual Health Inventory for Men \u3e = 17), stage below pT2, followed up for \u3e 6 months with minimally one side of neurovascular bundle preservation procedure, 12 (70.6%) were capable of intercourse postoperatively, and the mean time for sexual intercourse after operation was 5.7 months. In this series, robotic prostatectomy was a feasible and reproducible technique, with a short learning curve and low perioperative complication rate. Even during the initial phase of the learning curve, satisfactory results were obtained with regard to functional and oncological outcome

    Nanovesicles derived from iron oxide nanoparticles-incorporated mesenchymal stem cells for cardiac repair

    Get PDF
    Because of poor engraftment and safety concerns regarding mesenchymal stem cell (MSC) therapy, MSC-derived exosomes have emerged as an alternative cell-free therapy for myocardial infarction (MI). However, the diffusion of exosomes out of the infarcted heart following injection and the low productivity limit the potential of clinical applications. Here, we developed exosome-mimetic extracellular nanovesicles (NVs) derived from iron oxide nanoparticles (IONPs)-incorporated MSCs (IONP-MSCs). The retention of injected IONP-MSC-derived NVs (IONP-NVs) within the infarcted heart was markedly augmented by magnetic guidance. Furthermore, IONPs significantly increased the levels of therapeutic molecules in IONP-MSCs and IONP-NVs, which can reduce the concern of low exosome productivity. The injection of IONP-NVs into the infarcted heart and magnetic guidance induced an early shift from the inflammation phase to the reparative phase, reduced apoptosis and fibrosis, and enhanced angiogenesis and cardiac function recovery. This approach can enhance the therapeutic potency of an MSC-derived NV therapy.

    Improved Diabetic Wound Healing by EGF Encapsulation in Gelatin-Alginate Coacervates

    No full text
    Topical imageplication of epidermal growth fctor (EGF) has been used to accelerate diabetic foot ulcers but with limited efficacy. In this study, we selected a complex coacervate (EGF-Coa) composed of the low molecular weight gelatin type A and sodium alginate as a novel delivery system for EGF, based on encapsulation efficiency and protection of EGF from protease. EGF-Coa enhanced in vitro migration of keratinocytes and accelerated wound healing in streptozotocin-induced diabetic mice with increased granulation and re-epithelialization. While diabetic wound sites without treatment showed downward growth of hyperproliferative epidermis along the wound edges with poor matrix formation, EGF-Coa treatment recovered horizontal migration of epidermis over the newly deposited dermal matrix. EGF-Coa treatment also resulted in reduced levels of proinflammatory cytokines IL-1, IL-6, and THF-α. Freeze-dried coacervates packaged in aluminum pouches were stable for up to 4 months at 4 and 25 °C in terms of appearance, purity by RP-HPLC, and in vitro release profiles. There were significant physical and chemical changes in relative humidity above 33% or at 37 °C, suggesting the requirement for moisture-proof packaging and cold chain storage for long term stability. We propose low molecular weight gelatin type A and sodium alginate (LWGA-SA) coacervates as a novel EGF delivery system with enhanced efficacy for chronic wounds

    Cardiac Arrest Due to Rebleeding after Spinal Surgery: A case report

    No full text

    Controlled Grafting of Colloidal Nanoparticles on Graphene through Tailored Electrostatic Interaction

    No full text
    Nanoparticle/graphene hybrid composites have been of great interest in various disciplines due to their unique synergistic physicochemical properties. In this study, we report a facile and generalized synthesis method for preparing nanoparticle/exfoliated graphene (EG) composites by tailored electrostatic interactions. EG was synthesized by an electrochemical method, which produced selectively oxidized graphene sheets at the edges and grain boundaries. These EG sheets were further conjugated with polyethyleneimine to provide positive charges at the edges. The primary organic ligands of the colloidal nanoparticles were exchanged with Cl- or MoS42- anions, generating negatively charged colloidal nanoparticles in polar solvents. By simple electrostatic interactions between the EG and nanoparticles in a solution, nanoparticles were controllably assembled at the edges of the EG. Furthermore, the generality of this process was verified for a wide range of nanoparticles, such as semiconductors, metals, and magnets, on the EG. As a model application, designed composites with size-controlled FeCo nanoparticle/EG were utilized as electromagnetic interference countermeasure materials that showed a size-dependent shift of the frequency ranges on the electromagnetic absorption properties. The current generalized process will offer great potential for the large-scale production of well-designed graphene nanocomposites for electronic and energy applications

    Mutational analysis of whole mitochondrial DNA in patients with MELAS and MERRF diseases

    No full text
    Mitochondrial diseases are clinically and genetically heterogeneous disorders, which make the exact diagnosis and classification difficult. The purpose of this study was to identify pathogenic mtDNA mutations in 61 Korean unrelated families (or isolated patients) with MELAS or MERRF. In particular, the mtDNA sequences were completely determined for 49 patients. From the mutational analysis of mtDNA obtained from blood, 5 confirmed pathogenic mutations were identified in 17 families, and 4 unreported pathogenically suspected mutations were identified in 4 families. The m.3243A>G in the tRNALeu(UUR) was predominantly observed in 10 MELAS families, and followed by m.8344A>G in the tRNALys of 4 MERRF families. Most pathogenic mutations showed heteroplasmy, and the rates were considerably different within the familial members. Patients with a higher rate of mutations showed a tendency of having more severe clinical phenotypes, but not in all cases. This study will be helpful for the molecular diagnosis of mitochondrial diseases, as well as establishment of mtDNA database in Koreans
    corecore