518 research outputs found

    DBI equations and holographic DC conductivity

    Full text link
    We provide a simple method for writing the Dirac-Born-Infeld (DBI) equations of a Dp-brane in an arbitrary static background whose metric depends only on the holographic radial coordinate z. Using this method we revisit the Karch-O'Bannon's procedure to calculate the DC conductivity in the presence of constant electric and magnetic fields for backgrounds where the boundary is four or three dimensional and satisfies homogeneity and isotropy. We find a frame-independent expression for the DC conductivity tensor. For particular backgrounds we recover previous results on holographic metals and strange metals.Comment: 1+21 pages; v2 : references added, minor typos correcte

    High-field irreversible moment reorientation in the antiferromagnet Fe1.1_{1.1}Te

    Full text link
    Magnetization measurements have been performed on single-crystalline Fe1.1_{1.1}Te in pulsed magnetic fields H⊥c\mathbf{H}\perp\mathbf{c} up to 53 T and temperatures from 4.2 to 65 K. At T=4.2T=4.2 K, a non-reversible reorientation of the antiferromagnetic moments is observed at μ0HR=48\mu_0H_R=48 T as the pulsed field is on the rise. No anomaly is observed at HRH_R during the fall of the field and, as long as the temperature is unchanged, during both rises and falls of additional field pulses. The transition at HRH_R is reactivated if the sample is warmed up above the N\'{e}el temperature TN≃60T_N\simeq60 K and cooled down again. The magnetic field-temperature phase diagram of Fe1.1_{1.1}Te in H⊥c\mathbf{H}\perp\mathbf{c} is also investigated. We present the temperature dependence of HRH_R, as well as that of the antiferromagnetic-to-paramagnetic borderline HcH_c in temperatures above 40 K.Comment: 5 pages, 4 figure

    Virtual Compton Scattering off a Spinless Target in AdS/QCD

    Get PDF
    We study the doubly virtual Compton scattering off a spinless target γ∗P→γ∗P′\gamma^*P\to\gamma^*P' within the Anti-de Sitter(AdS)/QCD formalism. We find that the general structure allowed by the Lorentz invariance and gauge invariance of the Compton amplitude is not easily reproduced with the standard recipes of the AdS/QCD correspondence. In the soft-photon regime, where the semi-classical approximation is supposed to apply best, we show that the measurements of the electric and magnetic polarizabilities of a target like the charged pion in real Compton scattering, can already serve as stringent tests.Comment: 21 pages, version to be published in JHEP

    On a Holographic Model for Confinement/Deconfinement

    Full text link
    We study the thermodynamics of the hard wall model, which consists in the introduction of an infrared cut-off in asymptotically AdS spaces. This is a toy model for confining backgrounds in the context of the gauge/gravity correspondence. We use holographic renormalization and reproduce the existence of a Hawking Page phase transition recently discussed by Herzog. We also show that the entropy jumps from N0N^0 to N2N^2, which reinforces the interpretation of this transition as the gravity dual of confinement/deconfinement. We also show that similar results hold for the phenomenologically motivated soft wall model, underlining the potential universality of our analysis.Comment: 14 pages. V2: We included a new section discussing the soft wall model and new references. V3: We clarified some points and updated the references. Results unchanged. Version published in PR

    Deep Inelastic Scattering in Conformal QCD

    Get PDF
    We consider the Regge limit of a CFT correlation function of two vector and two scalar operators, as appropriate to study small-x deep inelastic scattering in N=4 SYM or in QCD assuming approximate conformal symmetry. After clarifying the nature of the Regge limit for a CFT correlator, we use its conformal partial wave expansion to obtain an impact parameter representation encoding the exchange of a spin j Reggeon for any value of the coupling constant. The CFT impact parameter space is the three-dimensional hyperbolic space H3, which is the impact parameter space for high energy scattering in the dual AdS space. We determine the small-x structure functions associated to the exchange of a Reggeon. We discuss unitarization from the point of view of scattering in AdS and comment on the validity of the eikonal approximation. We then focus on the weak coupling limit of the theory where the amplitude is dominated by the exchange of the BFKL pomeron. Conformal invariance fixes the form of the vector impact factor and its decomposition in transverse spin 0 and spin 2 components. Our formalism reproduces exactly the general results predict by the Regge theory, both for a scalar target and for gamma*-gamma* scattering. We compute current impact factors for the specific examples of N=4 SYM and QCD, obtaining very simple results. In the case of the R-current of N=4 SYM, we show that the transverse spin 2 component vanishes. We conjecture that the impact factors of all chiral primary operators of N=4 SYM only have components with 0 transverse spin.Comment: 44+16 pages, 7 figures. Some correction

    Experimental study of a liquid Xenon PET prototype module

    Get PDF
    A detector using liquid Xenon in the scintillation mode is studied for Positron Emission Tomography (PET). The specific design aims at taking full advantage of the liquid Xenon properties. It does feature a promising insensitive to any parallax effect. This work reports on the performances of the first LXe prototype module, equipped with a position sensitive PMT operating in the VUV range (178 nm).Comment: Proc. of the 7th International Workshops on Radiation Imaging Detectors (IWORID-7), Grenoble, France 4-7 July 200

    Polarized DIS in N=4 SYM: Where is spin at strong coupling?

    Get PDF
    Using the AdS/CFT correspondence, we calculate the polarized structure functions in strongly coupled N=4 supersymmetric Yang-Mills theory deformed in the infrared. We find that the flavor singlet contribution to the g_1 structure function is vanishingly small, while the flavor non-singlet contribution shows the Regge behavior at small-x with an intercept slightly less than 1. We explicitly check that the latter satisfies the moment sum rule. We discuss the `spin crisis' problem and suggest that at strong coupling the spin of a hadron entirely comes from the orbital angular momentum.Comment: 24 page

    Interplay of magnetism, Fermi surface reconstructions, and hidden-order in the heavy-fermion material URu2_2Si2_2

    Full text link
    URu2_2Si2_2 is surely one of the most mysterious of the heavy-fermion compounds. Despite more than twenty years of experimental and theoretical works, the order parameter of the transition at T0=17.5T_0 = 17.5 K is still unknown. The state below T0T_0 remains called "hidden-order phase" and the stakes are still to identify the energy scales driving the system to this phase. We present new magnetoresistivity and magnetization measurements performed on very-high-quality single crystals in pulsed magnetic fields up to 60 T. We show that the transition to the hidden-order state in URu2_2Si2_2 is initially driven by a high-temperature crossover at around 40-50 K, which is a fingerprint of inter-site electronic correlations. In a magnetic field H\mathbf{H} applied along the easy-axis c\bf{c}, the vanishing of this high-temperature scale precedes the polarization of the magnetic moments, as well as it drives the destabilization of the hidden-order phase. Strongly impurity-dependent magnetoresistivity confirms that the Fermi surface is reconstructed below T0T_0 and is strongly modified in a high magnetic field applied along c\mathbf{c}, i.e. at a sufficiently-high magnetic polarization. The possibility of a sharp crossover in the hidden-order state controlled by a field-induced change of the Fermi surface is pointed out.Comment: 10 pages, 6 figures, accepted in Physical Review
    • …
    corecore