4 research outputs found

    Pathological response in a triple-negative breast cancer cohort treated with neoadjuvant carboplatin and docetaxel according to Lehmann's refined classification

    Get PDF
    Purpose: Triple-negative breast cancer (TNBC) requires the identification of reliable predictors of response to neoadjuvant chemotherapy (NACT). For this purpose, we aimed to evaluate the performance of the TNBCtype-4 classifier in a cohort of patients with TNBC treated with neoadjuvant carboplatin and docetaxel (TCb). Methods: Patients with TNBC were accrued in a nonrandomized trial of neoadjuvant carboplatin AUC 6 and docetaxel 75 mg/m2 for six cycles. Response was evaluated in terms of pathologic complete response (pCR, ypT0/is ypN0) and residual cancer burden by Symmans and colleagues. Lehmann's subtyping was performed using the TNBCtype online tool from RNAseq data, and germline sequencing of a panel of seven DNA damage repair genes was conducted. Results: Ninety-four out of the 121 patients enrolled in the trial had RNAseq available. The overall pCR rate was 44.7%. Lehmann subtype distribution was 34.0% BL1, 20.2% BL2, 23.4% M, 14.9% LAR, and 7.4% were classified as ERþ. Response to NACT with TCb was significantly associated with Lehmann subtype (P ¼ 0.027), even in multivariate analysis including tumor size and nodal involvement, with BL1 patients achieving the highest pCR rate (65.6%), followed by BL2 (47.4%), M (36.4%), and LAR (21.4%). BL1 was associated with a significant younger age at diagnosis and higher ki67 values. Among our 10 germline mutation carriers, 30% were BL1, 40% were BL2, and 30% were M. Conclusions: TNBCtype-4 is associated with significantly different pCR rates for the different subtypes, with BL1 and LAR displaying the best and worse responses to NACT, respectively

    Assessment of a Genomic Assay in Patients with ERBB2 -Positive Breast Cancer Following Neoadjuvant Trastuzumab-Based Chemotherapy with or Without Pertuzumab

    Get PDF
    Importance: Biomarkers to guide the use of pertuzumab in the treatment of early-stage ERBB2 (formerly HER2)-positive breast cancer beyond simple ERBB2 status are needed. Objective: To determine if use of the HER2DX genomic assay (Reveal Genomics) in pretreatment baseline tissue samples of patients with ERBB2-positive breast cancer is associated with response to neoadjuvant trastuzumab-based chemotherapy with or without pertuzumab. Design, Setting, and Participants: This is a retrospective diagnostic/prognostic analysis of a multicenter academic observational study in Spain performed during 2018 to 2022 (GOM-HGUGM-2018-05). In addition, a combined analysis with 2 previously reported trials of neoadjuvant cohorts with results from the assay (DAPHNe and I-SPY2) was performed. All patients had stage I to III ERBB2-positive breast cancer, signed informed consent, and had available formalin-fixed paraffin-embedded tumor specimens obtained prior to starting therapy. Exposures: Patients received intravenous trastuzumab, 8 mg/kg, loading dose, followed by 6 mg/kg every 3 weeks in combination with intravenous docetaxel, 75 mg/m2, every 3 weeks and intravenous carboplatin area under the curve of 6 every 3 weeks for 6 cycles, or this regimen plus intravenous pertuzumab, 840 mg, loading dose, followed by an intravenous 420-mg dose every 3 weeks for 6 cycles. Main Outcome and Measures: Association of baseline assay-reported pathologic complete response (pCR) score with pCR in the breast and axilla, as well as association of baseline assay-reported pCR score with response to pertuzumab. Results: The assay was evaluated in 155 patients with ERBB2-positive breast cancer (mean [range] age, 50.3 [26-78] years). Clinical T1 to T2 and node-positive disease was present in 113 (72.9%) and 99 (63.9%) patients, respectively, and 105 (67.7%) tumors were hormone receptor positive. The overall pCR rate was 57.4% (95% CI, 49.2%-65.2%). The proportion of patients in the assay-reported pCR-low, pCR-medium, and pCR-high groups was 53 (34.2%), 54 (34.8%), and 48 (31.0%), respectively. In the multivariable analysis, the assay-reported pCR score (as a continuous variable from 0-100) showed a statistically significant association with pCR (odds ratio [OR] per 10-unit increase, 1.43; 95% CI, 1.22-1.70; P <.001). The pCR rates in the assay-reported pCR-high and pCR-low groups were 75.0% and 28.3%, respectively (OR, 7.85; 95% CI, 2.67-24.91; P <.001). In the combined analysis (n = 282), an increase in pCR rate due to pertuzumab was found in the assay-reported pCR-high tumors (OR, 5.36; 95% CI, 1.89-15.20; P <.001) but not in the assay-reported pCR-low tumors (OR, 0.86; 95% CI, 0.30-2.46; P =.77). A statistically significant interaction between the assay-reported pCR score and the effect of pertuzumab in pCR was observed. Conclusions and Relevance: This diagnostic/prognostic study demonstrated that the genomic assay predicted pCR following neoadjuvant trastuzumab-based chemotherapy with or without pertuzumab. This assay could guide therapeutic decisions regarding the use of neoadjuvant pertuzumab

    The West Melilla cold water coral mounds, Eastern Alboran Sea: Morphological characterization and environmental context

    No full text
    A new mound field, the West Melilla mounds, interpreted as being cold-water coral mounds, has been recently unveiled along the upper slope of the Mediterranean Moroccan continental margin, a few kilometers west of the Cape Tres Forcas. This study is based on the integration of high-resolution geophysical data (swath bathymetry, parametric sub-bottom profiler), CTD casts, Acoustic Doppler Current Profiler (ADCP), ROV video and seafloor sampling, acquired during the TOPOMED GASSIS (2011) and MELCOR (2012) cruises. Up to 103 mounds organized in two main clusters have been recognized in a depth range of 299–590 m, displaying a high density of 5 mounds/km2. Mounds, 1–48 m high above the surrounding seafloor and on average 260 m wide, are actually buried by a 1–12 m thick fine-grained sediment blanket. Seismic data suggest that the West Melilla mounds grew throughout the Early Pleistocene–Holocene, settling on erosive unconformities and mass movement deposits. During the last glacial–interglacial transition, the West Melilla mounds may have suffered a drastic change of the local sedimentary regime during the late Holocene and, unable to stand increasing depositional rates, were progressively buried. At the present day, temperature and salinity values on the West Melilla mounds suggest a plausible oceanographic setting, suitable for live CWCs. Nonetheless, more data is required to groundtruth the West Melilla mounds and better constrain the interplay of sedimentary and oceanographic factors during the evolution of the West Melilla mounds
    corecore