104 research outputs found

    Changes in Lumbo-Pelvic Coordination of Individuals with and without Low Back Pain when Wearing a Hip Orthosis

    Get PDF
    Individuals with low back pain demonstrate an abnormal lumbo-pelvic coordination compared to back-healthy individuals. This abnormal coordination presents itself as a reduction in lumbar contributions and an increase in pelvic rotations during a trunk forward bending and backward return task. This study investigated the ability of a hip orthosis in correcting such an abnormal lumbo-pelvic coordination by restricting pelvic rotation and, hence increasing lumbar contributions. The effects of the hip orthosis on the lumbo-pelvic coordination were investigated in 20 low back pain patients and 20 asymptomatic controls. The orthosis reduced pelvic rotation by 12.7° and increased lumbar contributions by 11%. Contrary to our expectation, orthosis-induced changes in lumbo-pelvic coordination were smaller in patients; most likely because our relatively young patient group had smaller unrestricted pelvic rotations compared to asymptomatic individuals. Considering the observed capability of a hip orthosis in causing the expected changes in lumbo-pelvic coordination when there is a relatively large pelvic contribution to trunk motion, application of a hip orthosis may provide a promising method of correcting abnormal lumbo-pelvic coordination, particularly among patients who demonstrate larger pelvic rotation, that warrants further investigation

    Preliminary Results on HAT-P-4, TrES-3, XO-2, and GJ 436 from the NASA EPOXI Mission

    Full text link
    EPOXI (EPOCh + DIXI) is a NASA Discovery Program Mission of Opportunity using the Deep Impact flyby spacecraft. The EPOCh (Extrasolar Planet Observation and Characterization) Science Investigation will gather photometric time series of known transiting exoplanet systems from January through August 2008. Here we describe the steps in the photometric extraction of the time series and present preliminary results of the first four EPOCh targets.Comment: 4 pages, 2 figures. To appear in the Proceedings of the 253rd IAU Symposium: "Transiting Planets", May 2008, Cambridge, M

    Transit Timing Observations from Kepler: VI. Potentially interesting candidate systems from Fourier-based statistical tests

    Get PDF
    We analyze the deviations of transit times from a linear ephemeris for the Kepler Objects of Interest (KOI) through Quarter six (Q6) of science data. We conduct two statistical tests for all KOIs and a related statistical test for all pairs of KOIs in multi-transiting systems. These tests identify several systems which show potentially interesting transit timing variations (TTVs). Strong TTV systems have been valuable for the confirmation of planets and their mass measurements. Many of the systems identified in this study should prove fruitful for detailed TTV studies.Comment: 32 pages, 6 of text and one long table, Accepted to Ap

    Two Earth-sized planets orbiting Kepler-20

    Get PDF
    Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R Earth), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R Earth) and the other smaller than the Earth (0.87R Earth), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.Comment: Letter to Nature; Received 8 November; accepted 13 December 2011; Published online 20 December 201

    Masses, radii, and orbits of small Kepler planets : The transition from gaseous to rocky planets

    Get PDF
    We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than three times the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify six planets with densities above 5 g cm-3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than 2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O).Peer reviewedFinal Accepted Versio

    Transit Timing Observations from Kepler: VI. Transit Timing Variation Candidates in the First Seventeen Months from Polynomial Models

    Full text link
    Transit timing variations provide a powerful tool for confirming and characterizing transiting planets, as well as detecting non-transiting planets. We report the results an updated TTV analysis for 1481 planet candidates (Borucki et al. 2011; Batalha et al. 2012) based on transit times measured during the first sixteen months of Kepler observations. We present 39 strong TTV candidates based on long-term trends (2.8% of suitable data sets). We present another 136 weaker TTV candidates (9.8% of suitable data sets) based on excess scatter of TTV measurements about a linear ephemeris. We anticipate that several of these planet candidates could be confirmed and perhaps characterized with more detailed TTV analyses using publicly available Kepler observations. For many others, Kepler has observed a long-term TTV trend, but an extended Kepler mission will be required to characterize the system via TTVs. We find that the occurrence rate of planet candidates that show TTVs is significantly increased (~68%) for planet candidates transiting stars with multiple transiting planet candidate when compared to planet candidates transiting stars with a single transiting planet candidate.Comment: Accepted to ApJ; 9 pages, incl. 3 B&W figures, 1 table, 2 electronic datasets available as ancillary files; Includes analyses of more planet candidates; Transit times and additional figures at http://www.astro.ufl.edu/~eford/data/kepler

    Using decision analysis to support proactive management of emerging infectious wildlife diseases

    Full text link
    Despite calls for improved responses to emerging infectious diseases in wildlife, management is seldom considered until a disease has been detected in affected populations. Reactive approaches may limit the potential for control and increase total response costs. An alternative, proactive management framework can identify immediate actions that reduce future impacts even before a disease is detected, and plan subsequent actions that are conditional on disease emergence. We identify four main obstacles to developing proactive management strategies for the newly discovered salamander pathogen Batrachochytrium salamandrivorans (Bsal). Given that uncertainty is a hallmark of wildlife disease management and that associated decisions are often complicated by multiple competing objectives, we advocate using decision analysis to create and evaluate trade-offs between proactive (pre-emergence) and reactive (post-emergence) management options. Policy makers and natural resource agency personnel can apply principles from decision analysis to improve strategies for countering emerging infectious diseases

    The kepler-19 system: a transiting 2.2 R ⊕ planet and a second planet detected via transit timing variations

    Get PDF
    We present the discovery of the Kepler-19 planetary system, which we first identified from a 9.3day periodic transit signal in the Kepler photometry. From high-resolution spectroscopy of the star, we find a stellar effective temperature T= 5541 60K, a metallicity [Fe/H] = -0.13 0.06, and a surface gravity log(g) = 4.59 0.10. We combine the estimate of T and [Fe/H] with an estimate of the stellar density derived from the photometric light curve to deduce a stellar mass of M = 0.936 0.040 M and a stellar radius of R = 0.850 0.018 R (these errors do not include uncertainties in the stellar models). We rule out the possibility that the transits result from an astrophysical false positive by first identifying the subset of stellar blends that reproduce the precise shape of the light curve. Using the additional constraints from the measured color of the system, the absence of a secondary source in the high-resolution spectrum, and the absence of a secondary source in the adaptive optics imaging, we conclude that the planetary scenario is more than three orders of magnitude more likely than a blend. The blend scenario is independently disfavored by the achromaticity of the transit: we measure a transit depth with Spitzer at 4.5 μm of 547+113 -110 ppm, consistent with the depth measured in the Kepler optical bandpass of 567 6 ppm (corrected for stellar limb darkening). We determine a physical radius of the planet Kepler-19b of Rp = 2.209 0.048 R ⊕; the uncertainty is dominated by uncertainty in the stellar parameters. From radial velocity observations of the star, we find an upper limit on the planet mass of 20.3 M ⊕, corresponding to a maximum density of 10.4 g cm -3. We report a significant sinusoidal deviation of the transit times from a predicted linear ephemeris, which we conclude is due to an additional perturbing body in the system. We cannot uniquely determine the orbital parameters of the perturber, as various dynamical mechanisms match the amplitude, period, and shape of the transit timing signal and satisfy the host star's radial velocity limits. However, the perturber in these mechanisms has a period ≲ 160days and mass ≲ 6 M Jup, confirming its planetary nature as Kepler-19c. We place limits on the presence of transits of Kepler-19c in the available Kepler data
    corecore