11,912 research outputs found
Convergence to equilibrium for the discrete coagulation-fragmentation equations with detailed balance
Under the condition of detailed balance and some additional restrictions on
the size of the coefficients, we identify the equilibrium distribution to which
solutions of the discrete coagulation-fragmentation system of equations
converge for large times, thus showing that there is a critical mass which
marks a change in the behavior of the solutions. This was previously known only
for particular cases as the generalized Becker-D\"oring equations. Our proof is
based on an inequality between the entropy and the entropy production which
also gives some information on the rate of convergence to equilibrium for
solutions under the critical mass.Comment: 28 page
Brief review on semileptonic B decays
We concisely review semileptonic B decays, focussing on recent progress on
both theoretical and experimental sides.Comment: 18 pages, 2 figures; version to be published in Mod. Phys. Lett.
Heavy-to-Light Form Factors in the Final Hadron Large Energy Limit of QCD
We argue that the Large Energy Effective Theory (LEET), originally proposed
by Dugan and Grinstein, is applicable to exclusive semileptonic, radiative and
rare heavy-to-light transitions in the region where the energy release E is
large compared to the strong interaction scale and to the mass of the final
hadron, i.e. for q^2 not close to the zero-recoil point. We derive the
Effective Lagrangian from the QCD one, and show that in the limit of heavy mass
M for the initial hadron and large energy E for the final one, the heavy and
light quark fields behave as two-component spinors. Neglecting QCD
short-distance corrections, this implies that there are only three form factors
describing all the pseudoscalar to pseudoscalar or vector weak current matrix
elements. We argue that the dependence of these form factors with respect to M
and E should be factorizable, the M-dependence (sqrt(M)) being derived from the
usual heavy quark expansion while the E-dependence is controlled by the
behaviour of the light-cone distribution amplitude near the end-point u=1. The
usual expectation of the (1-u) behaviour leads to a 1/E^2 scaling law, that is
a dipole form in q^2. We also show explicitly that in the appropriate limit,
the Light-Cone Sum Rule method satisfies our general relations as well as the
scaling laws in M and E of the form factors, and obtain very compact and simple
expressions for the latter. Finally we note that this formalism gives
theoretical support to the quark model-inspired methods existing in the
literature.Comment: Latex2e, 25 pages, no figure. Slight changes in the title and the
phrasing. Misprint in Eq. (25) corrected. To appear in Phys. Rev.
Constraints on the IR behaviour of gluon and ghost propagator from Ward-Slavnov-Taylor identities
We consider the constraints of the Slavnov-Taylor identity of the IR
behaviour of gluon and ghost propagators and their compatibility with solutions
of the ghost Dyson-Schwinger equation and with the lattice picture.Comment: 5 pages, 2 figure
Toolbox for analyzing finite two-state trajectories
In many experiments, the aim is to deduce an underlying multi-substate on-off
kinetic scheme (KS) from the statistical properties of a two-state trajectory.
However, the mapping of a KS into a two-state trajectory leads to the loss of
information about the KS, and so, in many cases, more than one KS can be
associated with the data. We recently showed that the optimal way to solve this
problem is to use canonical forms of reduced dimensions (RD). RD forms are
on-off networks with connections only between substates of different states,
where the connections can have non-exponential waiting time probability density
functions (WT-PDFs). In theory, only a single RD form can be associated with
the data. To utilize RD forms in the analysis of the data, a RD form should be
associated with the data. Here, we give a toolbox for building a RD form from a
finite two-state trajectory. The methods in the toolbox are based on known
statistical methods in data analysis, combined with statistical methods and
numerical algorithms designed specifically for the current problem. Our toolbox
is self-contained - it builds a mechanism based only on the information it
extracts from the data, and its implementation on the data is fast (analyzing a
10^6 cycle trajectory from a thirty-parameter mechanism takes a couple of hours
on a PC with a 2.66 GHz processor). The toolbox is automated and is freely
available for academic research upon electronic request
Predictions on , and from QCD Light-Cone Sum Rules
The form factors of the , and transitions
are calculated from QCD light-cone sum rules (LCSR) and used to predict the
widths and differential distributions of the exclusive semileptonic decays
, and ,
where . The current theoretical uncertainties are estimated. The LCSR
results are found to agree with the results of lattice QCD calculations and
with experimental data on exclusive semileptonic D decays. Comparison of the
LCSR prediction on with the CLEO measurement yields a
value of |V_{ub}| in agreement with other determinations.Comment: 24 pages, 12 figures, Latex, epsfig, some additional remarks on the
two-pole parameterization, prediction on the form factor added,
version to appear in Phys. Rev.
Measurement of Spin Correlation Parameters A, A, and A_ at 2.1 GeV in Proton-Proton Elastic Scattering
At the Cooler Synchrotron COSY/J\"ulich spin correlation parameters in
elastic proton-proton (pp) scattering have been measured with a 2.11 GeV
polarized proton beam and a polarized hydrogen atomic beam target. We report
results for A, A, and A_ for c.m. scattering angles between
30 and 90. Our data on A -- the first measurement of this
observable above 800 MeV -- clearly disagrees with predictions of available of
pp scattering phase shift solutions while A and A_ are reproduced
reasonably well. We show that in the direct reconstruction of the scattering
amplitudes from the body of available pp elastic scattering data at 2.1 GeV the
number of possible solutions is considerably reduced.Comment: 4 pages, 4 figure
Random Sequential Addition of Hard Spheres in High Euclidean Dimensions
Employing numerical and theoretical methods, we investigate the structural
characteristics of random sequential addition (RSA) of congruent spheres in
-dimensional Euclidean space in the infinite-time or
saturation limit for the first six space dimensions ().
Specifically, we determine the saturation density, pair correlation function,
cumulative coordination number and the structure factor in each =of these
dimensions. We find that for , the saturation density
scales with dimension as , where and
. We also show analytically that the same density scaling
persists in the high-dimensional limit, albeit with different coefficients. A
byproduct of this high-dimensional analysis is a relatively sharp lower bound
on the saturation density for any given by , where is the structure factor at
(i.e., infinite-wavelength number variance) in the high-dimensional limit.
Consistent with the recent "decorrelation principle," we find that pair
correlations markedly diminish as the space dimension increases up to six. Our
work has implications for the possible existence of disordered classical ground
states for some continuous potentials in sufficiently high dimensions.Comment: 38 pages, 9 figures, 4 table
Structural Transitions and Global Minima of Sodium Chloride Clusters
In recent experiments on sodium chloride clusters structural transitions
between nanocrystals with different cuboidal shapes were detected. Here we
determine reaction pathways between the low energy isomers of one of these
clusters, (NaCl)35Cl-. The key process in these structural transitions is a
highly cooperative rearrangement in which two parts of the nanocrystal slip
past one another on a {110} plane in a direction. In this way the
nanocrystals can plastically deform, in contrast to the brittle behaviour of
bulk sodium chloride crystals at the same temperatures; the nanocrystals have
mechanical properties which are a unique feature of their finite size. We also
report and compare the global potential energy minima for (NaCl)NCl- using two
empirical potentials, and comment on the effect of polarization.Comment: extended version, 13 pages, 8 figures, revte
- âŠ