520 research outputs found

    Investigation of slip transfer across HCP grain boundaries with application to cold dwell facet fatigue

    Get PDF
    This paper addresses the role of grain boundary slip transfer and thermally-activated discrete dislocation plasticity in the redistribution of grain boundary stresses during cold dwell fatigue in titanium alloys. Atomistic simulations have been utilised to calculate the grain boundary energies for titanium with respect to the misorientation angles. The grain boundary energies are utilised within a thermally-activated discrete dislocation plasticity model incorporating slip transfer controlled by energetic and grain boundary geometrical criteria. The model predicts the grain size effect on the flow strength in Ti alloys. Cold dwell fatigue behaviour in Ti-6242 alloy is investigated and it is shown that significant stress redistribution from soft to hard grains occurs during the stress dwell, which is observed both for grain boundaries for which slip transfer is permitted and inhibited. However, the grain boundary slip penetration is shown to lead to significantly higher hard-grain basal stresses near the grain boundary after dwell, thus exacerbating the load shedding stress compared to an impenetrable grain boundary. The key property controlling the dwell fatigue response is argued to remain the time constant associated with the thermal activation process for dislocation escape, but the slip penetrability is also important and exacerbates the load shedding. The inclusion of a macrozone does not significantly change the conclusions but does potentially lead to the possibility of a larger initial facet

    Discrete dislocation and crystal plasticity analyses of load shedding in polycrystalline titanium alloys

    Get PDF
    The focus of this paper is the mechanistic basis of the load shedding phenomenon that occurs under the dwell fatigue loading scenario. A systematic study was carried out using a discrete dislocation plasticity (DDP) model to investigate the effect of crystallographic orientations, localised dislocation behaviour and grain combinations on the phenomenon. Rate sensitivity in the model arises from a thermal activation process at low strain rates, which is accounted for by associating a stress- and temperature-dependent release time with obstacles; the activation energy was determined by calibrating an equivalent crystal plasticity model to experimental data. First, the application of Stroh's dislocation pile-up model of crack nucleation to facet fracture was quantitatively assessed using the DDP model. Then a polycrystalline model with grains generated using a controlled Poisson Voronoi tessellation was used to investigate the soft-hard-soft rogue grain combination commonly associated with load shedding. Dislocation density and peak stress at the soft/hard grain boundary increased significantly during the stress dwell period, effects that were enhanced by dislocations escaping from pile-ups at obstacles. The residual stress after dwell fatigue loading was also found to be much higher compared to standard fatigue loading. Taylor (uniform strain) and Sachs (uniform stress) type assumptions in a soft-hard grain combination have been assessed with a simple bicrystal DDP model. Basal slip nucleation in the hard grain was found to be initiated by high stresses generated by strong pile ups in the soft grain, and both basal and pyramidal slip nucleation was observed in the hard grain when the grain boundary orientation aligned with that of an active slip system in the soft grain. The findings of this study give new insight into the mechanisms of load shedding and faceting associated with cold dwell fatigue in Ti alloys used in aircraft engines

    Modeling Flocks and Prices: Jumping Particles with an Attractive Interaction

    Get PDF
    We introduce and investigate a new model of a finite number of particles jumping forward on the real line. The jump lengths are independent of everything, but the jump rate of each particle depends on the relative position of the particle compared to the center of mass of the system. The rates are higher for those left behind, and lower for those ahead of the center of mass, providing an attractive interaction keeping the particles together. We prove that in the fluid limit, as the number of particles goes to infinity, the evolution of the system is described by a mean field equation that exhibits traveling wave solutions. A connection to extreme value statistics is also provided.Comment: 35 pages, 9 figures. A shortened version appears as arXiv:1108.243

    An Investigation, Using Standard Experimental Techniques, to Determine FLCs at Elevated Temperature for Aluminium Alloys

    Get PDF
    An experimental procedure has been developed for the determination of FLCs at elevated temperatures. The GOM ARGUS system was employed for measuring surface strain based on pre-applied grids (pattern), and limit strains were determined according to the ISO 12004-2:2008 standard. Forming limit curves (FLCs) have been determined for AA5754 under warm forming conditions in an isothermal environment. The tests were carried out at various temperatures up to 300oC and forming speeds ranging from 5 – 300 mm s-1 . Results reveal the significant effect of both temperature and forming speed on FLCs of AA5754. Formability increases with increasing temperature above 200oC. Formability also increases with decreasing speed. The presented FLC results show that the best formability exists at low forming speed and the high temperature end of the warm forming range

    Drosophila Species Learn Dialects Through Communal Living

    Get PDF
    Many species are able to share information about their environment by communicating through auditory, visual, and olfactory cues. In Drosophila melanogaster, exposure to para- sitoid wasps leads to a decline in egg laying, and exposed females communicate this threat to naïve flies, which also depress egg laying. We find that species across the genus Drosophila respond to wasps by egg laying reduction, activate cleaved caspase in oocytes, and communicate the presence of wasps to naïve individuals. Communication within a species and between closely related species is efficient, while more distantly related species exhibit partial communication. Remarkably, partial communication between some species is enhanced after a cohabitation period that requires exchange of visual and olfactory signals. This interspecies “dialect learning” requires neuronal cAMP signaling in the mushroom body, suggesting neuronal plasticity facilitates dialect learning and memory. These observations establish Drosophila as genetic models for interspecies social communication and evolution of dialects

    Social Communication of Predator-Induced Changes in Drosophila Behavior and Germ Line Physiology

    Get PDF
    Behavioral adaptation to environmental threats and subsequent social transmission of adaptive behavior has evolutionary implications. In Drosophila, exposure to parasitoid wasps leads to a sharp decline in oviposition. We show that exposure to predator elicits both an acute and learned oviposition depression, mediated through the visual system. However, long-term persistence of oviposition depression after predator removal requires neuronal signaling functions, a functional mushroom body, and neurally driven apoptosis of oocytes through effector caspases. Strikingly, wasp-exposed flies (teachers) can transmit egg-retention behavior and trigger ovarian apoptosis in naive, unexposed flies (students). Acquisition and behavioral execution of this socially learned behavior by naive flies requires all of the factors needed for primary learning. The ability to teach does not require ovarian apoptosis. This work provides new insight into genetic and physiological mechanisms that underlie an ecologically relevant form of learning and mechanisms for its social transmission

    Solution heat treatment, forming and in-die quenching of a commercial sheet magnesium alloy into a complex-shaped component: experimentation and FE analysis

    Get PDF
    Interest in lightweight materials, particularly magnesium alloys, has increased significantly with rising efficiency requirements in the automotive sector. Magnesium is the lightest available structural metal, with a density approximately 35% lower than that of aluminium. The potential is great for magnesium to become a primary material used in future low carbon vehicle structures; however, there are significant obstacles, namely low ductility and formability, particularly at room temperature. The aim of this work is to present the feasibility of using the solution Heat treatment, Forming, and in-die Quenching (HFQ) process to produce complex shapes from a sheet magnesium alloy, and to use the results to verify a simulation of the process developed using commercial FE software. Uniaxial tensile tests were initially conducted to establish the optimum parameters for forming the part. Stamping trials were then carried out using these parameters, and a simulation set up modelling the forming operation. It was shown that the HFQ process could be used to form a successful component from this alloy, and that a good match was achieved between the results of the forming experiments and the simulation.The authors gratefully acknowledge the support from the EPSRC (Grant Ref: EP/I038616/1) for TARF-LCV: Towards Affordable, Closed-Loop Recyclable Future Low Carbon Vehicle Structures

    A unified constitutive model for asymmetric tension and compression creep-ageing behaviour of naturally aged Al-Cu-Li alloy

    Get PDF
    A set of unified constitutive equations is presented that predict the asymmetric tension and compression creep behaviour and recently observed double primary creep of pre-stretched/naturally aged aluminium-cooper-lithium alloy AA2050-T34. The evolution of the primary micro- and macro-variables related to the precipitation hardening and creep deformation of the alloy during creep age forming (CAF) are analysed and modelled. Equations for the yield strength evolution of the alloy, including an initial reversion and subsequent strengthening, are proposed based on a theory of concurrent dissolution, re-nucleation and growth of precipitates during artificial ageing. We present new observations of so-called double primary creep during the CAF process. This phenomenon is then predicted by introducing effects of interacting microstructures, including evolving precipitates, diffusing solutes and dislocations, into the sinh-law creep model. In addition, concepts of threshold creep stress σth and a microstructure-dependant creep variable H, which behave differently under different external stress directions, are proposed and incorporated into the creep model. This enables prediction of the asymmetric tension and compression creep-ageing behaviour of the alloy. Quantitative transmission electron microscopy (TEM) and related small-angle X-ray scattering (SAXS) analysis have been carried out for selected creep-aged samples to assist the development and calibration of the constitutive model. A good agreement has been achieved between the experimental results and the model. The model has the potential to be applied to creep age forming of other heat-treatable aluminium alloys

    Pulmonary Vascular Tree Segmentation from Contrast-Enhanced CT Images

    Full text link
    We present a pulmonary vessel segmentation algorithm, which is fast, fully automatic and robust. It uses a coarse segmentation of the airway tree and a left and right lung labeled volume to restrict a vessel enhancement filter, based on an offset medialness function, to the lungs. We show the application of our algorithm on contrast-enhanced CT images, where we derive a clinical parameter to detect pulmonary hypertension (PH) in patients. Results on a dataset of 24 patients show that quantitative indices derived from the segmentation are applicable to distinguish patients with and without PH. Further work-in-progress results are shown on the VESSEL12 challenge dataset, which is composed of non-contrast-enhanced scans, where we range in the midfield of participating contestants.Comment: Part of the OAGM/AAPR 2013 proceedings (1304.1876

    Some new and unexpected tauopathies in movement disorders

    Get PDF
    corecore