14,642 research outputs found
Development of large, horizontal-axis wind turbines
A program to develop large, horizontal-axis wind turbines is discussed. The program is directed toward developing the technology for safe, reliable, environmentally acceptable large wind turbines that can generate a significant amount of electricity at costs competitive with those of conventional electricity-generating systems. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. Several ongoing projects in large-wind-turbine development are directed toward meeting the technology requirements for utility applications. The machines based on first-generation technology (Mod-OA and Mod-1) successfully completed their planned periods of experimental operation in June, 1982. The second-generation machines (Mod-2) are in operation at selected utility sites. A third-generation machine (Mod-5) is under contract. Erection and initial operation of the Mod-5 in Hawaii should take place in 1986. Each successive generation of technology increased reliability and energy capture while reducing the cost of electricity. These advances are being made by gaining a better understanding of the system-design drivers, improving the analytical design tools, verifying design methods with operating field data, and incorporating new technology and innovative designs. Information is given on the results from the first- and second-generation machines (Mod-OA, - 1, and -2), the status of the Department of Interior, and the status of the third-generation wind turbine (Mod-5)
Space and biotechnology: An industry profile
The results of a study conducted by the Center for Space and Advanced Technology (CSAT) for NASA-JSC are presented. The objectives were to determine the interests and attitudes of the U.S. biotechnology industry toward space biotechnology and to prepare a concise review of the current activities of the biotechnology industry. In order to accomplish these objectives, two primary actions were taken. First, a questionnaire was designed, reviewed, and distributed to U.S. biotechnology companies. Second, reviews of the various biotechnology fields were prepared in several aspects of the industry. For each review, leading figures in the field were asked to prepare a brief review pointing out key trends and current industry technical problems. The result is a readable narrative of the biotechnology industry which will provide space scientists and engineers valuable clues as to where the space environment can be explored to advance the U.S. biotechnology industry
A site-specific standard for comparing dynamic solar ultraviolet protection characteristics of established tree canopies
A standardised procedure for making fair and comparable assessments of the ultraviolet protection of an established tree canopy that takes into account canopy movement and the changing position of the sun is presented for use by government, planning, and environmental health authorities. The technique utilises video image capture and replaces the need for measurement by ultraviolet radiometers for surveying shade quality characteristics of trees growing in public parks, playgrounds and urban settings. The technique improves upon tree shade assessments that may be based upon single measurements of the ultraviolet irradiance observed from a fixed point of view. The presented technique demonstrates how intelligent shade audits can be conducted without the need for specialist equipment, enabling the calculation of the Shade Protection Index (SPI) and Ultraviolet Protection Factor (UPF) for any discreet time interval and over a full calendar year
Self-Consistent Response of a Galactic Disk to an Elliptical Perturbation Halo Potential
We calculate the self-consistent response of an axisymmetric galactic disk
perturbed by an elliptical halo potential of harmonic number m = 2, and obtain
the net disk ellipticity. Such a potential is commonly expected to arise due to
a galactic tidal encounter and also during the galaxy formation process. The
self-gravitational potential corresponding to the self-consistent,
non-axisymmetric density response of the disk is obtained by inversion of
Poisson equation for a thin disk. This response potential is shown to oppose
the perturbation potential, because physically the disk self-gravity resists
the imposed potential. This results in a reduction in the net ellipticity of
the perturbation halo potential in the disk plane. The reduction factor
denoting this decrease is independent of the strength of the perturbation
potential, and has a typical minimum value of 0.75 - 0.9 for a wide range of
galaxy parameters. The reduction is negligible at all radii for higher
harmonics (m > or = 3) of the halo potential. (abridged).Comment: 26 pages (LaTex- aastex style), 3 .eps figures. To appear in the
Astrophysical Journal, Vol. 542, Oct. 20, 200
Toxicity of thermal degradation products of spacecraft materials
Three polymeric materials were evaluated for relative toxicity of their pyrolysis products to rats by inhalation: Y-7683 (LS 200), Y-7684 (Vonar 3 on Fiberglass), and Y-7685 (Vonar 3 on N W Polyester). Criteria employed for assessing relative toxicity were (1) lethality from in-chamber pyrolysis, (2) lethality from an outside-of-chamber pyrolysis MSTL Procedure, and (3) disruption of trained rats' shock-avoidance performance during sub-lethal exposures to in-chamber pyrolysis of the materials
Functional design for operational earth resources ground data processing
The author has identified the following significant results. Study emphasis was on developing a unified concept for the required ground system, capable of handling data from all viable acquisition platforms and sensor groupings envisaged as supporting operational earth survey programs. The platforms considered include both manned and unmanned spacecraft in near earth orbit, and continued use of low and high altitude aircraft. The sensor systems include both imaging and nonimaging devices, operated both passively and actively, from the ultraviolet to the microwave regions of the electromagnetic spectrum
Formation of a high quality two-dimensional electron gas on cleaved GaAs
We have succeeded in fabricating a two-dimensional electron gas (2DEG) on the cleaved (110) edge of a GaAs wafer by molecular beam epitaxy (MBE). A (100) wafer previously prepared by MBE growth is reinstalled in the MBE chamber so that an in situ cleave exposes a fresh (110) GaAs edge for further MBE overgrowth. A sequence of Si-doped AlGaAs layers completes the modulation-doped structure at the cleaved edge. Mobilities as high as 6.1×10^5 cm^2/V s are measured in the 2DEG at the cleaved interface
Imaging internal flows in a drying sessile polymer dispersion drop using Spectral Radar Optical Coherence Tomography (SR-OCT)
In this work, we present the visualization of the internal flows in a drying sessile polymer dispersion drop on hydrophilic and hydrophobic surfaces with Spectral Radar Optical Coherence Tomography (SR-OCT).We have found that surface features such as the initial contact angle and pinning of the contact line, play a crucial role on the flow direction and final shape of the dried drop. Moreover, imaging through selection of vertical slices using optical coherence tomography offers a feasible alternative compared to imaging through selection of narrow horizontal slices using confocal microscopy for turbid, barely transparent fluids
- …