9,161 research outputs found
Simulator evaluation of display concepts for pilot monitoring and control of space shuttle approach and landing. Phase 2: Manual flight control
A study of the display requirements for final approach management of the space shuttle orbiter vehicle is presented. An experimental display concept, providing a more direct, pictorial representation of the vehicle's movement relative to the selected approach path and aiming points, was developed and assessed as an aid to manual flight path control. Both head-up, windshield projections and head-down, panel mounted presentations of the experimental display were evaluated in a series of simulated orbiter approach sequence. Data obtained indicate that the experimental display would enable orbiter pilots to exercise greater flexibility in implementing alternative final approach control strategies. Touchdown position and airspeed dispersion criteria were satisfied on 91 percent of the approach sequences, representing various profile and wind effect conditions. Flight path control and airspeed management satisfied operationally-relevant criteria for the two-segment, power-off orbiter approach and were consistently more accurate and less variable when the full set of experimental display elements was available to the pilot. Approach control tended to be more precise when the head-up display was used; however, the data also indicate that the head-down display would provide adequate support for the manual control task
Calculation of shock-separated turbulent boundary layers
Numerical solutions of the complete, time-averaged conservation equations using several eddy-viscosity models for the Reynolds shear stress to close the equations are compared with experimental measurements in a compressible, turbulent separated flow. An efficient time-splitting, explicit difference scheme was used to solve the two-dimensional conservation equations. The experiment used for comparison was a turbulent boundary layer that was separated by an incident shock wave in a Mach 2.93 flow with a unit Reynolds number of 5.7 x 10 to the seventh power m. Comparisons of predicted and experimental values of surface pressure, shear stress along the wall, and velocity profiles are shown. One of the tested eddy-viscosity models which allows the shear stress to be out of equilibrium with the mean flow produces substantially better agreement with the experimental measurements than the simpler models. A tool is thereby provided for inferring additional information about the flow, such as static pressures in the stream, which might not be directly obtainable from experiments
Improved display support for flight management during low visibility approach and landing. A simulator evaluation of an ILS-independent runway perspective display Final report
Low visibility approach and landing simulation for jet transport
Mixing effectiveness in the Apollo oxygen tanks of spin-up and rotation-reversal maneuvers
Two-dimensional simulations of stratified flows in the Apollo oxygen tanks have been used to estimate the mixing effectiveness of spin-up and rotation-reversal maneuvers. Calculations have been made for square and circular cylindrical tank geometries. Differences arising from heater position on the tank wall or near the center of the tank have been investigated. In the event of a prolonged period without normal maneuvers, the potential pressure decay (drop in pressure that would result from adiabatic mixing) can be suppressed by more than a factor of two through the use of spin-up and rotation-reversal maneuvers. Changes in rotation rate of order three revolutions per hour or greater are sufficient for this purpose
Influence of Turbulence Modeling On Aftbody Surface Heating Prediction For A Hypersonic Entry Capsule
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106463/1/AIAA2013-2774.pd
Spin-charge separation and localization in one-dimension
We report on measurements of quantum many-body modes in ballistic wires and
their dependence on Coulomb interactions, obtained from tunneling between two
parallel wires in a GaAs/AlGaAs heterostructure while varying electron density.
We observe two spin modes and one charge mode of the coupled wires, and map the
dispersion velocities of the modes down to a critical density, at which
spontaneous localization is observed. Theoretical calculations of the charge
velocity agree well with the data, although they also predict an additional
charge mode that is not observed. The measured spin velocity is found to be
smaller than theoretically predicted.Comment: There are minor textual differences between this version and the
version that has been published in Science (follow the DOI link below to
obtain it). In addition, here we have had to reduce figure quality to save
space on the serve
Bayesian photon counting with electron-multiplying charge coupled devices (EMCCDs)
The EMCCD is a CCD type that delivers fast readout and negligible detector
noise, making it an ideal detector for high frame rate applications. Because of
the very low detector noise, this detector can potentially count single
photons. Considering that an EMCCD has a limited dynamical range and negligible
detector noise, one would typically apply an EMCCD in such a way that multiple
images of the same object are available, for instance, in so called lucky
imaging. The problem of counting photons can then conveniently be viewed as
statistical inference of flux or photon rates, based on a stack of images. A
simple probabilistic model for the output of an EMCCD is developed. Based on
this model and the prior knowledge that photons are Poisson distributed, we
derive two methods for estimating the most probable flux per pixel, one based
on thresholding, and another based on full Bayesian inference. We find that it
is indeed possible to derive such expressions, and tests of these methods show
that estimating fluxes with only shot noise is possible, up to fluxes of about
one photon per pixel per readout.Comment: Fixed a few typos compared to the published versio
- …