14 research outputs found
Enhancement of Lutein Production in Chlorella sorokiniana (Chorophyta) by Improvement of Culture Conditions and Random Mutagenesis
Chlorella sorokiniana has been selected for lutein production, after a screening of thirteen species of microalgae, since it showed both a high content in this carotenoid and a high growth rate. The effects of several nutritional and environmental factors on cell growth and lutein accumulation have been studied. Maximal specific growth rate and lutein content were attained at 690 μmol photons m−2 s−1, 28 °C, 2 mM NaCl, 40 mM nitrate and under mixotrophic conditions. In general, optimal conditions for the growth of this strain also lead to maximal lutein productivity. High lutein yielding mutants of C. sorokiniana have been obtained by random mutagenesis, using N-methyl-N′-nitro-nitrosoguanidine (MNNG) as a mutagen and selecting mutants by their resistance to the inhibitors of the carotenogenic pathway nicotine and norflurazon. Among the mutants resistant to the herbicides, those exhibiting both high content in lutein and high growth rate were chosen. Several mutants exhibited higher contents in this carotenoid than the wild type, showing, in addition, either a similar or higher growth rate than the latter strain. The mutant MR-16 exhibited a 2.0-fold higher volumetric lutein content than that of the wild type, attaining values of 42.0 mg L−1 and mutants DMR-5 and DMR-8 attained a lutein cellular content of 7.0 mg g−1 dry weight. The high lutein yield exhibited by C. sorokiniana makes this microalga an excellent candidate for the production of this commercially interesting pigment
Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis
The isolation and characterization of the phytoene synthase gene from the green microalga Chlorella zofingiensis (CzPSY), involved in the first step of the carotenoids biosynthetic pathway, have been performed. CzPSY gene encodes a polypeptide of 420 amino acids. A single copy of CzPSY has been found in C. zofingiensis by Southern blot analysis. Heterologous genetic complementation in Escherichia coli showed the ability of the predicted protein to catalyze the condensation of two molecules of geranylgeranyl pyrophosphate (GGPP) to form phytoene. Phylogenetic analysis has shown that the deduced protein forms a cluster with the rest of the phytoene synthases (PSY) of the chlorophycean microalgae studied, being very closely related to PSY of plants. This new isolated gene has been adequately inserted in a vector and expressed in Chlamydomonas reinhardtii. The overexpression of CzPSY in C. reinhardtii, by nuclear transformation, has led to an increase in the corresponding CzPSY transcript level as well as in the content of the carotenoids violaxanthin and lutein which were 2.0- and 2.2-fold higher than in untransformed cells. This is an example of manipulation of the carotenogenic pathway in eukaryotic microalgae, which can open up the possibility of enhancing the productivity of commercial carotenoids by molecular engineering
¿Deben los modelos de emergencia de Lolium rigidum adaptarse en función de las condiciones climáticas?
Lolium rigidum es una problemática mala hierba a nivel mundial que en España produce importantes pérdidas de cultivo y económicas. El grupo de Biología y Agroecología de Malas hierbas (BAMh) de la SEMh ha estudiado la emergencia de esta especie durante dos campañas, 2016-17 y 2017-18. Para ello, se estableció un experimento en 10 localidades con una población de L. rigidum recolectada en Cataluña y se realizó el seguimiento de su emergencia cada 2-7 días. La emergencia se parametrizó en función de registros de temperatura y humedad procedentes de un datalogger enterrado a 2 cm. Los resultados muestran que el uso de los grados térmicos horarios es suficiente para una correcta descripción de la emergencia, desechando la opción de aplicar los grados hidrotérmicos, más comunes en los modelos de malas hierbas de invierno. Sin embargo, la emergencia de esta población de L. rigidum fue diferente en el centro y noreste de España respecto al sur, sugiriendo un efecto ambiental debido a su adaptación climática. Por ello, se plantea la necesidad de incluir poblaciones locales con el fin de adaptar el modelo desarrollado en el presente trabajo para los biotipos climáticos existentesPostprint (published version
Isolation and Characterization of a Lycopene ε-Cyclase Gene of Chlorella (Chromochloris) zofingiensis. Regulation of the Carotenogenic Pathway by Nitrogen and Light
The isolation and characterization of the lycopene ε-cyclase gene from the green microalga Chlorella (Chromochloris) zofingiensis (Czlcy-e) was performed. This gene is involved in the formation of the carotenoids α-carotene and lutein. Czlcy-e gene encoded a polypeptide of 654 amino acids. A single copy of Czlcy-e was found in C. zofingiensis. Functional analysis by heterologous complementation in Escherichia coli showed the ability of this protein to convert lycopene to δ-carotene. In addition, the regulation of the carotenogenic pathway by light and nitrogen was also studied in C. zofingiensis. High irradiance stress did not increase mRNA levels of neither lycopene β-cyclase gene (lcy-b) nor lycopene ε-cyclase gene (lcy-e) as compared with low irradiance conditions, whereas the transcript levels of psy, pds, chyB and bkt genes were enhanced, nevertheless triggering the synthesis of the secondary carotenoids astaxanthin, canthaxanthin and zeaxanthin and decreasing the levels of the primary carotenoids α-carotene, lutein, violaxanthin and β-carotene. Nitrogen starvation per se enhanced mRNA levels of all genes considered, except lcy-e and pds, but did not trigger the synthesis of astaxanthin, canthaxanthin nor zeaxanthin. The combined effect of both high light and nitrogen starvation stresses enhanced significantly the accumulation of these carotenoids as well as the transcript levels of bkt gene, as compared with the effect of only high irradiance stress
Efficient Heterologous Transformation of Chlamydomonas reinhardtii npq2 Mutant with the Zeaxanthin Epoxidase Gene Isolated and Characterized from Chlorella zofingiensis
In the violaxanthin cycle, the violaxanthin de-epoxidase and zeaxanthin epoxidase catalyze the inter-conversion between violaxanthin and zeaxanthin in both plants and green algae. The zeaxanthin epoxidase gene from the green microalga Chlorella zofingiensis (Czzep) has been isolated. This gene encodes a polypeptide of 596 amino acids. A single copy of Czzep has been found in the C. zofingiensis genome by Southern blot analysis. qPCR analysis has shown that transcript levels of Czzep were increased after zeaxanthin formation under high light conditions. The functionality of Czzep gene by heterologous genetic complementation in the Chlamydomonas mutant npq2, which lacks zeaxanthin epoxidase (ZEP) activity and accumulates zeaxanthin in all conditions, was analyzed. The Czzep gene was adequately inserted in the pSI105 vector and expressed in npq2. The positive transformants were able to efficiently convert zeaxanthin into violaxanthin, as well as to restore their maximum quantum efficiency of the PSII (Fv/Fm). These results show that Chlamydomonas can be an efficient tool for heterologous expression and metabolic engineering for biotechnological applications.This work was supported by the Andalusian Government, Spain (group BIO299)
Enhancement of Lutein Production in Chlorella sorokiniana (Chorophyta) by Improvement of Culture Conditions and Random Mutagenesis
Chlorella sorokiniana has been selected for lutein production, after a screening
of thirteen species of microalgae, since it showed both a high content in this carotenoid and
a high growth rate. The effects of several nutritional and environmental factors on cell
growth and lutein accumulation have been studied. Maximal specific growth rate and lutein
content were attained at 690 μmol photons m−2 s−1, 28 °C, 2 mM NaCl, 40 mM nitrate and
under mixotrophic conditions. In general, optimal conditions for the growth of this strain
also lead to maximal lutein productivity. High lutein yielding mutants of C. sorokiniana
have been obtained by random mutagenesis, using N-methyl-N′-nitro-nitrosoguanidine
(MNNG) as a mutagen and selecting mutants by their resistance to the inhibitors of the
carotenogenic pathway nicotine and norflurazon. Among the mutants resistant to the
herbicides, those exhibiting both high content in lutein and high growth rate were chosen.
Several mutants exhibited higher contents in this carotenoid than the wild type, showing, in
addition, either a similar or higher growth rate than the latter strain. The mutant MR-16
exhibited a 2.0-fold higher volumetric lutein content than that of the wild type, attaining
values of 42.0 mg L−1 and mutants DMR-5 and DMR-8 attained a lutein cellular content of
7.0 mg g−1 dry weight. The high lutein yield exhibited by C. sorokiniana makes this
microalga an excellent candidate for the production of this commercially interesting pigment
Isolation and Characterization of a Lycopene ε-Cyclase Gene of Chlorella (Chromochloris) zofingiensis. Regulation of the Carotenogenic Pathway by Nitrogen and Light
The isolation and characterization of the lycopene ε-cyclase gene from the green microalga Chlorella (Chromochloris) zofingiensis (Czlcy-e) was performed. This gene is involved in the formation of the carotenoids α-carotene and lutein. Czlcy-e gene encoded a polypeptide of 654 amino acids. A single copy of Czlcy-e was found in C. zofingiensis. Functional analysis by heterologous complementation in Escherichia coli showed the ability of this protein to convert lycopene to δ-carotene. In addition, the regulation of the carotenogenic pathway by light and nitrogen was also studied in C. zofingiensis. High irradiance stress did not increase mRNA levels of neither lycopene β-cyclase gene (lcy-b) nor lycopene ε-cyclase gene (lcy-e) as compared with low irradiance conditions, whereas the transcript levels of psy, pds, chyB and bkt genes were enhanced, nevertheless triggering the synthesis of the secondary carotenoids astaxanthin, canthaxanthin and zeaxanthin and decreasing the levels of the primary carotenoids α-carotene, lutein, violaxanthin and β-carotene. Nitrogen starvation per se enhanced mRNA levels of all genes considered, except lcy-e and pds, but did not trigger the synthesis of astaxanthin, canthaxanthin nor zeaxanthin. The combined effect of both high light and nitrogen starvation stresses enhanced significantly the accumulation of these carotenoids as well as the transcript levels of bkt gene, as compared with the effect of only high irradiance stress
Ruminal metagenomic libraries as a source of relevant hemicellulolytic enzymes for biofuel production
The success of second-generation (2G) ethanol technology
relies on the efficient transformation of hemicellulose
into monosaccharides and, particularly, on
the full conversion of xylans into xylose for over
18% of fermentable sugars. We sought new hemicellulases
using ruminal liquid, after enrichment of
microbes with industrial lignocellulosic substrates
and preparation of metagenomic libraries. Among
150 000 fosmid clones tested, we identified 22
clones with endoxylanase activity and 125 with bxylosidase
activity. These positive clones were
sequenced en masse, and the analysis revealed
open reading frames with a low degree of similarity
with known glycosyl hydrolases families. Among
them, we searched for enzymes that were thermostable
(activity at > 50°C) and that operate at high
rate at pH around 5. Upon a wide series of assays,
the clones exhibiting the highest endoxylanase and b-xylosidase activities were identified. The fosmids
were sequenced, and the corresponding genes
cloned, expressed and proteins purified. We found
that the activity of the most active b-xylosidase was
at least 10-fold higher than that in commercial enzymatic
fungal cocktails. Endoxylanase activity was in
the range of fungal enzymes. Fungal enzymatic
cocktails supplemented with the bacterial hemicellulases
exhibited enhanced release of sugars from pretreated
sugar cane straw, a relevant agricultural
residue
¿Deben los modelos de emergencia de Lolium rigidum adaptarse en función de las condiciones climáticas?
Lolium rigidum es una problemática mala hierba a nivel mundial que en España produce importantes pérdidas de cultivo y económicas. El grupo de Biología y Agroecología de Malas hierbas (BAMh) de la SEMh ha estudiado la emergencia de esta especie durante dos campañas, 2016-17 y 2017-18. Para ello, se estableció un experimento en 10 localidades con una población de L. rigidum recolectada en Cataluña y se realizó el seguimiento de su emergencia cada 2-7 días. La emergencia se parametrizó en función de registros de temperatura y humedad procedentes de un datalogger enterrado a 2 cm. Los resultados muestran que el uso de los grados térmicos horarios es suficiente para una correcta descripción de la emergencia, desechando la opción de aplicar los grados hidrotérmicos, más comunes en los modelos de malas hierbas de invierno. Sin embargo, la emergencia de esta población de L. rigidum fue diferente en el centro y noreste de España respecto al sur, sugiriendo un efecto ambiental debido a su adaptación climática. Por ello, se plantea la necesidad de incluir poblaciones locales con el fin de adaptar el modelo desarrollado en el presente trabajo para los biotipos climáticos existente