3,056 research outputs found

    FRICAT: A FIRST catalog of FRI radio galaxies

    Get PDF
    We built a catalog of 219 FRI radio galaxies (FRIs), called FRICAT, selected from a published sample and obtained by combining observations from the NVSS, FIRST, and SDSS surveys. We included in the catalog the sources with an edge-darkened radio morphology, redshift 0.15\leq 0.15, and extending (at the sensitivity of the FIRST images) to a radius rr larger than 30 kpc from the center of the host. We also selected an additional sample (sFRICAT) of 14 smaller (10 <r<<r< 30 kpc) FRIs, limiting to z<0.05z<0.05. The hosts of the FRICAT sources are all luminous (21Mr24-21 \gtrsim M_r \gtrsim -24), red early-type galaxies with black hole masses in the range 108MBH3×109M10^8 \lesssim M_{\rm BH} \lesssim 3\times10^9 M_\odot; the spectroscopic classification based on the optical emission line ratios indicates that they are all low excitation galaxies. Sources in the FRICAT are then indistinguishable from the FRIs belonging to the Third Cambridge Catalogue of Radio Sources (3C) on the basis of their optical properties. Conversely, while the 3C-FRIs show a strong positive trend between radio and [OIII] emission line luminosity, these two quantities are unrelated in the FRICAT sources; at a given line luminosity, they show radio luminosities spanning about two orders of magnitude and extending to much lower ratios between radio and line power than 3C-FRIs. Our main conclusion is that the 3C-FRIs just represent the tip of the iceberg of a much larger and diverse population of FRIs.Comment: 34 pages, 8 figures, 1 table, 1 appendix,accepted for publication in A&A, pre-proof versio

    FR0CAT: a FIRST catalog of FR0 radio galaxies

    Get PDF
    With the aim of exploring the properties of the class of FR0 radio galaxies, we selected a sample of 108 compact radio sources, called FR0CAT, by combining observations from the NVSS, FIRST, and SDSS surveys. The catalog includes sources with z0.05\leq 0.05, with a radio size \lesssim 5 kpc, and with an optical spectrum characteristic of low-excitation galaxies. Their 1.4-GHz radio luminosities range 1038νL1.4104010^{38} \lesssim \nu L_{1.4} \lesssim 10^{40} erg/s. The FR0CAT hosts are mostly (86%) luminous (21Mr23-21 \gtrsim M_r \gtrsim -23) red early-type galaxies with black hole masses 108MBH109M10^8 \lesssim M_{\rm BH} \lesssim 10^9 M_\odot: similar to the hosts of FRI radio galaxies, but they are on average a factor \sim1.6 less massive. The number density of FR0CAT sources is \sim5 times higher than that of FRIs, and thus they represent the dominant population of radio sources in the local Universe. Different scenarios are considered to account for the smaller sizes and larger abundance of FR0s with respect to FRIs. An age-size scenario that considers FR0s as young radio galaxies that will all eventually evolve into extended radio sources cannot be reconciled with the large space density of FR0s. However, the radio activity recurrence, with the duration of the active phase covering a wide range of values and with short active periods strongly favored with respect to longer ones, might account for their large density number. Alternatively, the jet properties of FR0s might be intrinsically different from those of the FRIs, the former class having lower bulk Lorentz factors, possibly due to lower black hole spins. Our study indicates that FR0s and FRI/IIs can be interpreted as two extremes of a continuous population of radio sources that is characterized by a broad distribution of sizes and luminosities of their extended radio emission, but shares a single class of host galaxies.Comment: 11 pages, 6 figures, accepted for publication on A&

    The HST view of the innermost narrow line region

    Get PDF
    We analyze the properties of the innermost narrow line region in a sample of low-luminosity AGN. We select 33 LINERs (bona fide AGN) and Seyfert galaxies from the optical spectroscopic Palomar survey observed by HST/STIS. We find that in LINERs the [NII] and [OI] lines are broader than the [SII] line and that the [NII]/[SII] flux ratio increases when moving from ground-based to HST spectra. This effect is more pronounced considering the wings of the lines. Our interpretation is that, as a result of superior HST spatial resolution, we isolate a compact region of dense ionized gas in LINERs, located at a typical distance of about 3 pc and with a gas density of about 104^4-105^5 cm3^{-3}, which we identify with the outer portion of the intermediate line region (ILR). Instead, we do not observe these kinds of effects in Seyferts; this may be the result of a stronger dilution from the NLR emission, since the HST slit maps a larger region in these sources. Alternatively, we argue that the innermost, higher density component of the ILR is only present in Seyferts, while it is truncated at larger radii because of the presence of the circumnuclear torus. The ILR is only visible in its entirety in LINERs because the obscuring torus is not present in these sources.Comment: 11 pages, 9 figures, A&A in pres

    WATCAT: a tale of wide-angle tailed radio galaxies

    Full text link
    We present a catalog of 47 wide-angle tailed radio galaxies (WATs), the WATCAT; these galaxies were selected by combining observations from the National Radio Astronomy Observatory/Very Large Array Sky Survey (NVSS), the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST), and the Sloan Digital Sky Survey (SDSS), and mainly built including a radio morphological classification. We included in the catalog only radio sources showing two-sided jets with two clear "warmspots" (i.e., jet knots as bright as 20% of the nucleus) lying on the opposite side of the radio core, and having classical extended emission resembling a plume beyond them. The catalog is limited to redshifts z \leq 0.15, and lists only sources with radio emission extended beyond 30 kpc from the host galaxy. We found that host galaxies of WATCAT sources are all luminous (-20.5 \gtrsim Mr \gtrsim -23.7), red early-type galaxies with black hole masses in the range 10810^8\lesssim MBH109_{\rm BH} \lesssim 10^9 M_\odot. The spectroscopic classification indicates that they are all low-excitation galaxies (LEGs). Comparing WAT multifrequency properties with those of FRI and FRII radio galaxies at the same redshifts, we conclude that WATs show multifrequency properties remarkably similar to FRI radio galaxies, having radio power of typical FRIIs

    Deciphering the large-scale environment of radio galaxies in the local Universe: where do they born, grow and die?

    Get PDF
    The role played by the large-scale environment on the nuclear activity of radio galaxies (RGs), is still not completely understood. Accretion mode, jet power and galaxy evolution are connected with their large-scale environment from tens to hundreds of kpc. Here we present a detailed, statistical, analysis of the large-scale environment for two samples of RGs up to redshifts zsrcz_\mathrm{src}=0.15. The main advantages of our study, with respect to those already present in the literature, are due to the extremely homogeneous selection criteria of catalogs adopted to perform our investigation. This is also coupled with the use of several clustering algorithms. We performed a direct search of galaxy-rich environments around RGs using them as beacon. To perform this study we also developed a new method that does not appear to suffer by a strong zsrcz_\mathrm{src} dependence as other algorithms. We conclude that, despite their radio morphological (FR\,I vsvs FR\,II) and/or their optical (HERG vsvs LERG) classification, RGs in the local Universe tend to live in galaxy-rich large-scale environments having similar characteristics and richness. We highlight that the fraction of FR\,Is-LERG, inhabiting galaxy rich environments, appears larger than that of FR\,IIs-LERG. We also found that 5 out of 7 FR\,II-HERGs, with zsrcz_\mathrm{src}\leq0.11, lie in groups/clusters of galaxies. However, we recognize that, despite the high level of completeness of our catalogs, when restricting to the local Universe, the low number of HERGs (\sim10\% of the total FR\,IIs investigated) prevent us to make a strong statistical conclusion about this source class.Comment: 21 pages, 25 figures, accepted for publication on the Astrophysical Journal Supplement Series - pre-proof versio

    LeMMINGs III. The e-MERLIN legacy survey of the Palomar sample: exploring the origin of nuclear radio emission in active and inactive galaxies through the [O III] - radio connection

    Get PDF
    What determines the nuclear radio emission in local galaxies? To address this question, we combine optical [O III] line emission, robust black hole (BH) mass estimates, and high-resolution e-MERLIN 1.5-GHz data, from the LeMMINGs survey, of a statistically complete sample of 280 nearby optically active (LINER and Seyfert) and inactive [H II and absorption line galaxies (ALGs)] galaxies. Using [O III] luminosity (L[O III]) as a proxy for the accretion power, local galaxies follow distinct sequences in the optical-radio planes of BH activity, which suggest different origins of the nuclear radio emission for the optical classes. The 1.5-GHz radio luminosity of their parsec-scale cores (Lcore) is found to scale with BH mass (Mbh) and [O III] luminosity. Below Mbh ~ 10^(6.5) Msun, stellar processes from non-jetted H II galaxies dominate with Lcore \propto Mbh^(0.62\pm0.33) and Lcore \propto L[O III]^(0.79\pm0.30). Above Mbh ~ 10^(6.5) Msun, accretion-driven processes dominate with Lcore \propto Mbh^(1.5-1.65) and Lcore \propto L[O III]^(0.99-1.31) for active galaxies: radio-quiet/loud LINERs, Seyferts, and jetted H II galaxies always display (although low) signatures of radio-emitting BH activity, with L1.5GHz > 10^(19.8) W Hz^(-1) and Mbh > 10^7 Msun, on a broad range of Eddington-scaled accretion rates (mdot). Radio-quiet and radio-loud LINERs are powered by low-mdot discs launching sub-relativistic and relativistic jets, respectively. Low-power slow jets and disc/corona winds from moderately high to high-mdot discs account for the compact and edge-brightened jets of Seyferts, respectively. Jetted H II galaxies may host weakly active BHs. Fuel-starved BHs and recurrent activity account for ALG properties. In conclusion, specific accretion-ejection states of active BHs determine the radio production and the optical classification of local active galaxies

    Emission lines in early-type galaxies: active nuclei or stars?

    Full text link
    We selected 27244 nearby, red, giant early-type galaxies (RGEs) from the Sloan Digital Sky Survey (SDSS). In a large fraction (53%) of their spectra the [O III] emission line is detected, with an equivalent width (EW) distribution strongly clustered around ~0.75 A. The vast majority of those RGEs for which it is possible to derive emission line ratios (amounting to about half of the sample) show values characteristic of LINERs. The close connection between emission lines and stellar continuum points to stellar processes as the most likely source of the bulk of the ionizing photons in RGEs, rather than active nuclei. In particular, the observed EW and optical line ratios are consistent with the predictions of models in which the photoionization comes from to hot evolved stars. Shocks driven by supernovae or stellar ejecta might also contribute to the ionization budget. A minority, ~4%, of the galaxies show emission lines with an equivalent that is width a factor of ~2 greater than the sample median. Only among them are Seyfert-like spectra found. Furthermore, 40% of this subgroup have a radio counterpart, compared to ~6% of the rest of the sample. These characteristics argue in favor of an AGN origin for their emission lines. Emission lines diagnostic diagrams do not reveal a distinction between the AGN subset and the other members of the sample, and consequently they are not a useful tool for establishing the dominant source of the ionizing photons, which is better predicted by the EW of the emission lines.Comment: Accepted for publication in A&

    Hard - X-rays selected Active Galactic Nuclei. I. A radio view at high-frequencies

    Full text link
    A thorough study of radio emission in Active Galactic Nuclei (AGN) is of fundamental importance to understand the physical mechanisms responsible for the emission and the interplay between accretion and ejection processes. High frequency radio observations can target the nuclear contribution of smaller emitting regions and are less affected by absorption. We present JVLA 22 and 45 GHz observations of 16 nearby (0.003\lez\le0.3) hard - X-rays selected AGN at the (sub)-kpc scale with tens uJy beam1^{-1} sensitivity. We detected 15/16 sources, with flux densities ranging from hundreds uJy beam1^{-1} to tens Jy (specific luminosities from \sim1020^{20} to \sim1025WHz1^{25}\,W\,Hz^{-1} at 22 GHz). All detected sources host a compact core, with 8 being core-dominated at either frequencies, the others exhibiting also extended structures. Spectral indices range from steep to flat/inverted. We interpret this evidence as either due to a core+jet system (6/15), a core accompanied by surrounding star formation (1/15), to a jet oriented close to the line of sight (3/15), to emission from a corona or the base of a jet (1/15), although there might be degeneracies between different processes. Four sources require more data to shed light on their nature. We conclude that, at these frequencies, extended, optically-thin components are present together with the flat-spectrum core. The LR/LX105{L_R}/{L_X}\sim10^{-5} relation is roughly followed, indicating a possible contribution to radio emission from a hot corona. A weakly significant correlation between radio core (22 and 45 GHz) and X-rays luminosities is discussed in the light of an accretion-ejection framework.Comment: Accepted for publication on MNRA

    Jets in FR0 radio galaxies

    Full text link
    The local radio-loud AGN population is dominated by compact sources named FR0s. These sources show features, for example the host type, the mass of the supermassive black hole (SMBH), and the multi-band nuclear characteristics, that are similar to those of FRI radio galaxies. However, in the radio band, while FR0 and FRI share the same nuclear properties, the kiloparsec-scale diffuse component dominant in FRI is missing in FR0s. With this project we would like to study the parsec-scale structure in FR0s in comparison with that of FRI sources. To this end we observed 18 FR0 galaxies with the VLBA at 1.5 and 5 GHz and/or with the EVN at 1.7 GHz and produced detailed images at milliarcsec resolution of their nuclear emission to study the jet and core structure. All sources have been detected but one. Four sources are unresolved, even in these high-resolution images; jets have been detected in all other sources. We derived the distribution of the jet-to-counter-jet ratio of FR0s and found that it is significantly different from that of FRIs, suggesting different jet bulk speed velocities. Combining the present data with published data of FR0 with VLBI observations, we derive that the radio structure of FR0 galaxies shows strong evidence that parsec-scale jets in FR0 sources are mildly relativistic with a bulk velocity on the order of 0.5c or less. A jet structure with a thin inner relativistic spine surrounded by a low-velocity sheath could be in agreement with the SMBH and jet launch region properties.Comment: 12 pages, 16 figures Accepted for the publication in Astronomy and Astrophysic

    Cosmic degeneracies III: N-body simulations of Interacting Dark Energy with non-Gaussian initial conditions

    Get PDF
    We perform for the first time N-body simulations of interacting dark energy assuming non-Gaussian initial conditions, with the aim of investigating possible degeneracies of these two theoretically independent phenomena in different observational probes. We focus on the large-scale matter distribution, as well as on the statistical and structural properties of collapsed haloes and cosmic voids. On very large scales, we show that it is possible to choose the interaction and non-Gaussian parameters such that their effects on the halo power spectrum cancel, and the power spectrum is indistinguishable from a \u39b cold dark matter (\u2060\u39bCDM) model. On small scales, measurements of the non-linear matter power spectrum, halo-matter bias, halo and subhalo mass function, and cosmic void number function validate the degeneracy determined on large scales. However, the internal structural properties of haloes and cosmic voids, namely halo concentration\u2013mass relation and void density profile, are very different from those measured in the \u39bCDM model, thereby breaking the degeneracy. In practice, the values of fNL required to cancel the effect of interaction are already ruled by observations. Our results show in principle that the combination of large- and small-scale probes is needed to constrain interacting dark energy and primordial non-Gaussianity separately
    corecore