702 research outputs found
Holographic Construction of Excited CFT States
We present a systematic construction of bulk solutions that are dual to CFT
excited states. The bulk solution is constructed perturbatively in bulk fields.
The linearised solution is universal and depends only on the conformal
dimension of the primary operator that is associated with the state via the
operator-state correspondence, while higher order terms depend on detailed
properties of the operator, such as its OPE with itself and generally involve
many bulk fields. We illustrate the discussion with the holographic
construction of the universal part of the solution for states of two
dimensional CFTs, either on or on . We compute the
1-point function both in the CFT and in the bulk, finding exact agreement. We
comment on the relation with other reconstruction approaches.Comment: 26 pages, 4 figures, v2: comments adde
Thermalization from gauge/gravity duality: Evolution of singularities in unequal time correlators
We consider a gauge/gravity dual model of thermalization which consists of a
collapsing thin matter shell in asymptotically Anti-de Sitter space. A central
aspect of our model is to consider a shell moving at finite velocity as
determined by its equation of motion, rather than a quasi-static approximation
as considered previously in the literature. By applying a divergence matching
method, we obtain the evolution of singularities in the retarded unequal time
correlator , which probes different stages of the thermalization. We
find that the number of singularities decreases from a finite number to zero as
the gauge theory thermalizes. This may be interpreted as a sign of decoherence.
Moreover, in a second part of the paper, we show explicitly that the thermal
correlator is characterized by the existence of singularities in the complex
time plane. By studying a quasi-static state, we show the singularities at real
times originate from contributions of normal modes. We also investigate the
possibility of obtaining complex singularities from contributions of
quasi-normal modes.Comment: 35 pages, 4 figure
Holographic Magnetic Star
A warm fermionic AdS star under a homogeneous magnetic field is explored. We
obtain the relativistic Landau levels by using Dirac equation and use the
Tolman-Oppenheimer-Volkoff (TOV) equation to study the physical profiles of the
star. Bulk properties such as sound speed, adiabatic index, and entropy density
within the star are calculated analytically and numerically. Bulk temperature
increases the mass limit of the AdS star but external magnetic field has the
opposite effect. The results are partially interpreted in terms of the
pre-thermalization process of the gauge matter at the AdS boundary after the
mass injection. The entropy density is found to demonstrate similar temperature
dependence as the magnetic black brane in the AdS in certain limits regardless
of the different nature of the bulk and Hawking temperatures. Total entropy of
the AdS star is also found to be an increasing function of the bulk temperature
and a decreasing function of the magnetic field, similar behaviour to the mass
limit. Since both total entropy and mass limit are global quantities, they
could provide some hints to the value of entropy and energy of the dual gauge
matter before and during the thermalization.Comment: 39 pages, 14 figures, 1 table, comments and references added, to
appear in JHE
Gravitational collapse and thermalization in the hard wall model
We study a simple example of holographic thermalization in a confining field
theory: the homogeneous injection of energy in the hard wall model. Working in
an amplitude expansion, we find black brane formation for sufficiently fast
energy injection and a scattering wave solution for sufficiently slow
injection. We comment on our expectations for more sophisticated holographic
QCD models.Comment: 33 pages, 5 figure
Time singularities of correlators from Dirichlet conditions in AdS/CFT
Within AdS/CFT, we establish a general procedure for obtaining the leading
singularity of two-point correlators involving operator insertions at different
times. The procedure obtained is applied to operators dual to a scalar field
which satisfies Dirichlet boundary conditions on an arbitrary time-like surface
in the bulk. We determine how the Dirichlet boundary conditions influence the
singularity structure of the field theory correlation functions. New
singularities appear at boundary points connected by null geodesics bouncing
between the Dirichlet surface and the boundary. We propose that their
appearance can be interpreted as due to a non-local double trace deformation of
the dual field theory, in which the two insertions of the operator are
separated in time. The procedure developed in this paper provides a technical
tool which may prove useful in view of describing holographic thermalization
using gravitational collapse in AdS space.Comment: 30 pages, 3 figures. Version as in JHE
Meson Thermalization in Various Dimensions
In gauge/gravity duality framework the thermalization of mesons in strongly
coupled (p+1)-dimensional gauge theories is studied for a general Dp-Dq system,
q>=p, using the flavour Dq-brane as a probe. Thermalization corresponds to the
horizon formation on the flavour Dq-brane. We calculate the thermalization
time-scale due to a time-dependent change in the baryon number chemical
potential, baryon injection in the field theory. We observe that for such a
general system it has a universal behaviour depending only on the t'Hooft
coupling constant and the two parameters which describe how we inject baryons
into the system. We show that this universal behaviour is independent of the
details of the theory whether it is conformal and/or supersymmetric.Comment: 26 pages, 2 figure
On Field Theory Thermalization from Gravitational Collapse
Motivated by its field theory interpretation, we study gravitational collapse
of a minimally coupled massless scalar field in Einstein gravity with a
negative cosmological constant. After demonstrating the accuracy of the
numerical algorithm for the questions we are interested in, we investigate
various aspects of the apparent horizon formation. In particular, we study the
time and radius of the apparent horizon formed as functions of the initial
Gaussian profile for the scalar field. We comment on several aspects of the
dual field theory picture.Comment: 31 pages, 17 figures; V2 Some figures corrected, minor revision.
arXiv admin note: substantial text overlap with arXiv:1106.233
Holographic Evolution of Entanglement Entropy
We study the evolution of entanglement entropy in a 2-dimensional
equilibration process that has a holographic description in terms of a Vaidya
geometry. It models a unitary evolution in which the field theory starts in a
pure state, its vacuum, and undergoes a perturbation that brings it far from
equilibrium. The entanglement entropy in this set up provides a measurement of
the quantum entanglement in the system. Using holographic techniques we recover
the same result obtained before from the study of processes triggered by a
sudden change in a parameter of the hamiltonian, known as quantum quenches.
Namely, entanglement in 2-dimensional conformal field theories propagates with
velocity v^2=1. Both in quantum quenches and in the Vaidya model equilibration
is only achieved at the local level. Remarkably, the holographic derivation of
this last fact requires information from behind the apparent horizon generated
in the process of gravitational collapse described by the Vaidya geometry. In
the early stages of the evolution the apparent horizon seems however to play no
relevant role with regard to the entanglement entropy. We speculate on the
possibility of deriving a thermalization time for occupation numbers from our
analysis.Comment: 26 pages, 10 figure
Holographic dilepton production in a thermalizing plasma
We determine the out-of-equilibrium production rate of dileptons at rest in
strongly coupled N=4 Super Yang-Mills plasma using the AdS/CFT correspondence.
Thermalization is achieved via the gravitational collapse of a thin shell of
matter in AdS_5 space and the subsequent formation of a black hole, which we
describe in a quasistatic approximation. Prior to thermalization, the dilepton
spectral function is observed to oscillate as a function of frequency, but the
amplitude of the oscillations decreases when thermal equilibrium is approached.
At the same time, we follow the flow of the quasinormal spectrum of the
corresponding U(1) vector field towards its equilibrium limit.Comment: 21 pages, 7 figures. v2: Version accepted for publication in JHEP;
minor modifications, added reference
On holographic thermalization and gravitational collapse of massless scalar fields
In this paper we study thermalization in a strongly coupled system via
AdS/CFT. Initially, the energy is injected into the system by turning on a
spatially homogenous scalar source coupled to a marginal composite operator.
The thermalization process is studied by numerically solving Einstein's
equations coupled to a massless scalar field in the Poincare patch of AdS_5. We
define a thermalization time t_T on the AdS side, which has an interpretation
in terms of a spacelike Wilson loop in CFT. Here T is the thermal
equilibrium temperature. We study both cases with the source turned on in
short(Delta t = 1/T) durations. In the former case,
the thermalization time t_T = g_t/T <= 1/T and the coefficient g_t = 0.73 in
the limit Delta t <= 0.02/T. In the latter case, we find double- and
multiple-collapse solutions, which may be interpreted as the gravity duals of
two- or multi-stage thermalization in CFT. In all the cases our results
indicate that such a strongly coupled system thermalizes in a typical time
scale t_T=O(1)/T.Comment: 25 papers, 13 figures, Minor modifications, details of numerics
added, references added, final version to appear in JHE
- âŠ