80 research outputs found

    Signaling Role of Prokineticin 2 on the Estrous Cycle of Female Mice

    Get PDF
    The possible signaling role of prokineticin 2 (PK2) and its receptor, prokineticin receptor 2 (PKR2), on female reproduction was investigated. First, the expression of PKR2 and its co-localization with estrogen receptor (ERα) in the hypothalamus was examined. Sexually dimorphic expression of PKR2 in the preoptic area of the hypothalamus was observed. Compared to the male mice, there was more widespread PKR2 expression in the preoptic area of the hypothalamus in the female mice. The likely co-expression of PKR2 and ERα in the preoptic area of the hypothalamus was observed. The estrous cycles in female PK2-null, and PKR2-null heterozygous mice, as well as in PK2-null and PKR2-null compound heterozygous mice were examined. Loss of one copy of PK2 or PKR2 gene caused elongated and irregular estrous cycle in the female mice. The alterations in the estrous cycle were more pronounced in PK2-null and PKR2-null compound heterozygous mice. Consistent with these observations, administration of a small molecule PK2 receptor antagonist led to temporary blocking of estrous cycle at the proestrous phase in female mice. The administration of PKR2 antagonist was found to blunt the circulating LH levels. Taken together, these studies indicate PK2 signaling is required for the maintenance of normal female estrous cycles

    Evaluation of antihypercholesterolemic effect using Memecylon edule Roxb. ethanolic extract in cholesterol-induced Swiss albino mice

    Get PDF
    Purpose/Aim: In the present study, we investigate the antihypercholesterolemic effect of the ethanolic extract of Memecylon edule in in vivo. Methods: Cholesterol (1%) -induced experimental groups were treated with 100 mg/kg and 200 mg/kg M. edule ethanolic extract. The study period of antihypercholesterolemia, the mice body weight, lipid profile, serum enzymes (such as superoxide dismutase, catalase, and glutathione peroxidase), liver marker enzyme, and histopathological study of liver tissues were examined. Results: The M. edule-treated groups have exhibited significant changes in total cholesterol, very-low-density lipoprotein, and low-density lipoprotein, and eventually increased the high-density-lipoprotein activity in serum. Also, it reduced the malondialdehyde level and increased the antioxidant-enzyme activities. The activity is mainly the presence of flavonoids, tannins, saponins, and glycosides in the ethanolic extract of M. edule. Conclusion; The M. edule extract contains a different class of secondary metabolites, which reduces the hypercholesterolemic condition in the experimental animal model. The results explored the M. edule extract as a potent drug for hypercholesterolemic condition

    4-Sulfamoylanilinium nitrate

    Get PDF
    In the crystal structure of the title compound, C6H9N2O2S+·NO3 −, the cations and anions are connected by N—H⋯O hydrogen bonds into a three-dimensional network

    Functionally compromised CHD7 alleles in patients with isolated GnRH deficiency

    Get PDF
    Inactivating mutations in chromodomain helicase DNA binding protein 7 (CHD7) cause CHARGE syndrome, a severe multiorgan system disorder of which Isolated gonadotropin-releasing hormone (GnRH) deficiency (IGD) is a minor feature. Recent reports have described predominantly missense CHD7 alleles in IGD patients, but it is unclear if these alleles are relevant to causality or overall genetic burden of Kallmann syndrome (KS) and normosmic form of IGD. To address this question, we sequenced CHD7 in 783 well-phenotyped IGD patients lacking full CHARGE features; we identified nonsynonymous rare sequence variants in 5.2% of the IGD cohort (73% missense and 27% splice variants). Functional analyses in zebrafish using a surrogate otolith assay of a representative set of these CHD7 alleles showed that rare sequence variants observed in controls showed no altered function. In contrast, 75% of the IGD-associated alleles were deleterious and resulted in both KS and normosmic IGD. In two families, pathogenic mutations in CHD7 coexisted with mutations in other known IGD genes. Taken together, our data suggest that rare deleterious CHD7 alleles contribute to the mutational burden of patients with both KS and normosmic forms of IGD in the absence of full CHARGE syndrome. These findings (i) implicate a unique role or preferential sensitivity for CHD7 in the ontogeny of GnRH neurons, (ii) reiterate the emerging genetic complexity of this family of IGD disorders, and (iii) demonstrate how the coordinated use of well-phenotyped cohorts, families, and functional studies can inform genetic architecture and provide insights into the developmental biology of cellular systems

    An ancient founder mutation in PROKR2 impairs human reproduction

    Get PDF
    Congenital gonadotropin-releasing hormone (GnRH) deficiency manifests as absent or incomplete sexual maturation and infertility. Although the disease exhibits marked locus and allelic heterogeneity, with the causal mutations being both rare and private, one causal mutation in the prokineticin receptor, PROKR2 L173R, appears unusually prevalent among GnRH-deficient patients of diverse geographic and ethnic origins. To track the genetic ancestry of PROKR2 L173R, haplotype mapping was performed in 22 unrelated patients with GnRH deficiency carrying L173R and their 30 first-degree relatives. The mutation's age was estimated using a haplotype-decay model. Thirteen subjects were informative and in all of them the mutation was present on the same ∼123 kb haplotype whose population frequency is ≤10%. Thus, PROKR2 L173R represents a founder mutation whose age is estimated at approximately 9000 years. Inheritance of PROKR2 L173R-associated GnRH deficiency was complex with highly variable penetrance among carriers, influenced by additional mutations in the other PROKR2 allele (recessive inheritance) or another gene (digenicity). The paradoxical identification of an ancient founder mutation that impairs reproduction has intriguing implications for the inheritance mechanisms of PROKR2 L173R-associated GnRH deficiency and for the relevant processes of evolutionary selection, including potential selective advantages of mutation carriers in genes affecting reproductio

    A Balanced Translocation in Kallmann Syndrome Implicates a Long Noncoding RNA, RMST, as a GnRH Neuronal Regulator.

    Get PDF
    CONTEXT: Kallmann syndrome (KS) is a rare, genetically heterogeneous Mendelian disorder. Structural defects in KS patients have helped define the genetic architecture of gonadotropin-releasing hormone (GnRH) neuronal development in this condition. OBJECTIVE: Examine the functional role a novel structural defect affecting a long noncoding RNA (lncRNA), RMST, found in a KS patient. DESIGN: Whole genome sequencing, induced pluripotent stem cells and derived neural crest cells (NCC) from the KS patient were contrasted with controls. SETTING: The Harvard Reproductive Sciences Center, Massachusetts General Hospital Center for Genomic Medicine, and Singapore Genome Institute. PATIENT: A KS patient with a unique translocation, t(7;12)(q22;q24). INTERVENTIONS/MAIN OUTCOME MEASURE/RESULTS: A novel translocation was detected affecting the lncRNA, RMST, on chromosome 12 in the absence of any other KS mutations. Compared with controls, the patient's induced pluripotent stem cells and NCC provided functional information regarding RMST. Whereas RMST expression increased during NCC differentiation in controls, it was substantially reduced in the KS patient's NCC coincident with abrogated NCC morphological development and abnormal expression of several "downstream" genes essential for GnRH ontogeny (SOX2, PAX3, CHD7, TUBB3, and MKRN3). Additionally, an intronic single nucleotide polymorphism in RMST was significantly implicated in a genome-wide association study associated with age of menarche. CONCLUSIONS: A novel deletion in RMST implicates the loss of function of a lncRNA as a unique cause of KS and suggests it plays a critical role in the ontogeny of GnRH neurons and puberty

    Multivariate investigation of parameters in the development and improvement of NiFe cells

    Get PDF
    In this article, we use a surface response approach to investigate the effect of bismuth sulphide as well as the compositions of PTFE in the overall columbic efficiency of a NiFe cell battery. Our results demonstrate that while bismuth sulphide favours the process of charge/discharge of a NiFe cell, the use of metallic bismuth only marginally influences coulombic efficiency. In addition we had found that the presence of the soluble bisulfide anion is not sufficient to increase coulombic efficiency in NiFe cells. © 2014 The Authors. Published by Elsevier B.V

    POU6F2 mutation in humans with pubertal failure alters GnRH transcript expression

    Get PDF
    Idiopathic hypogonadotropic hypogonadism (IHH) is characterized by the absence of pubertal development and subsequent impaired fertility often due to gonadotropin-releasing hormone (GnRH) deficits. Exome sequencing of two independent cohorts of IHH patients identified 12 rare missense variants in POU6F2 in 15 patients. POU6F2 encodes two distinct isoforms. In the adult mouse, expression of both isoform1 and isoform2 was detected in the brain, pituitary, and gonads. However, only isoform1 was detected in mouse primary GnRH cells and three immortalized GnRH cell lines, two mouse and one human. To date, the function of isoform2 has been verified as a transcription factor, while the function of isoform1 has been unknown. In the present report, bioinformatics and cell assays on a human-derived GnRH cell line reveal a novel function for isoform1, demonstrating it can act as a transcriptional regulator, decreasing GNRH1 expression. In addition, the impact of the two most prevalent POU6F2 variants, identified in five IHH patients, that were located at/or close to the DNA-binding domain was examined. Notably, one of these mutations prevented the repression of GnRH transcripts by isoform1. Normally, GnRH transcription increases as GnRH cells mature as they near migrate into the brain. Augmentation earlier during development can disrupt normal GnRH cell migration, consistent with some POU6F2 variants contributing to the IHH pathogenesis
    corecore