252 research outputs found

    New membership determination and proper motions of NGC 1817. Parametric and non-parametric approach

    Full text link
    We have calculated proper motions and re-evaluated the membership probabilities of 810 stars in the area of two NGC objects, NGC 1817 and NGC 1807. We have obtained absolute proper motions from 25 plates in the reference system of the Tycho-2 Catalogue. The plates have a maximum epoch difference of 81 years; and they were taken with the double astrograph at Zo-Se station of Shanghai Observatory, which has an aperture of 40 cm and a plate scale of 30 arcsec/mm. The average proper motion precision is 1.55 mas/yr. These proper motions are used to determine the membership probabilities of stars in the region, based on there being only one very extended physical cluster: NGC 1817. With that aim, we have applied and compared parametric and non-parametric approaches to cluster/field segregation. We have obtained a list of 169 probable member stars.Comment: 11 pages, 8 figures, A&A in pres

    Hunting for open clusters in \textit{Gaia} DR2: the Galactic anticentre

    Full text link
    The Gaia Data Release 2 (DR2) provided an unprecedented volume of precise astrometric and excellent photometric data. In terms of data mining the Gaia catalogue, machine learning methods have shown to be a powerful tool, for instance in the search for unknown stellar structures. Particularly, supervised and unsupervised learning methods combined together significantly improves the detection rate of open clusters. We systematically scan Gaia DR2 in a region covering the Galactic anticentre and the Perseus arm (120≀l≀205(120 \leq l \leq 205 and −10≀b≀10)-10 \leq b \leq 10), with the goal of finding any open clusters that may exist in this region, and fine tuning a previously proposed methodology successfully applied to TGAS data, adapting it to different density regions. Our methodology uses an unsupervised, density-based, clustering algorithm, DBSCAN, that identifies overdensities in the five-dimensional astrometric parameter space (l,b,ϖ,Όα∗,ΌΎ)(l,b,\varpi,\mu_{\alpha^*},\mu_{\delta}) that may correspond to physical clusters. The overdensities are separated into physical clusters (open clusters) or random statistical clusters using an artificial neural network to recognise the isochrone pattern that open clusters show in a colour magnitude diagram. The method is able to recover more than 75% of the open clusters confirmed in the search area. Moreover, we detected 53 open clusters unknown previous to Gaia DR2, which represents an increase of more than 22% with respect to the already catalogued clusters in this region. We find that the census of nearby open clusters is not complete. Different machine learning methodologies for a blind search of open clusters are complementary to each other; no single method is able to detect 100% of the existing groups. Our methodology has shown to be a reliable tool for the automatic detection of open clusters, designed to be applied to the full Gaia DR2 catalogue.Comment: 8 pages, accepted by Astronomy and Astrophysics (A&A) the 14th May, 2019. Tables 1 and 2 available at the CD

    A ring in a shell: the large-scale 6D structure of the Vela OB2 complex

    Get PDF
    The Vela OB2 association is a group of 10 Myr stars exhibiting a complex spatial and kinematic substructure. The all-sky Gaia DR2 catalogue contains proper motions, parallaxes (a proxy for distance) and photometry that allow us to separate the various components of Vela OB2. We characterise the distribution of the Vela OB2 stars on a large spatial scale, and study its internal kinematics and dynamic history. We make use of Gaia DR2 astrometry and published Gaia-ESO Survey data. We apply an unsupervised classification algorithm to determine groups of stars with common proper motions and parallaxes. We find that the association is made up of a number of small groups, with a total current mass over 2330 Msun. The three-dimensional distribution of these young stars trace the edge of the gas and dust structure known as the IRAS Vela Shell across 180 pc and shows clear signs of expansion. We propose a common history for Vela OB2 and the IRAS Vela Shell. The event that caused the expansion of the shell happened before the Vela OB2 stars formed, imprinted the expansion in the gas the stars formed from, and most likely triggered star formation.Comment: Accepted by A&A (02 November 2018), 13 pages, 9+2 figure

    uvby-Hbeta CCD photometry and membership segregation of the open cluster NGC 2548; Gaps in the Main Sequence of open clusters

    Full text link
    Deep CCD photometry in the uvby-Hbeta intermediate-band system is presented for the cluster NGC 2548 (M 48). A complete membership analysis based on astrometric and photometric criteria is applied. The photometric analysis of a selected sample of stars yields a reddening value of E(b-y)=0.06\pm0.03, a distance modulus of V_0-M_V=9.3\pm0.5 (725 pc) and a metallicity of [Fe/H]= -0.24\pm0.27. Through isochrone fitting we find an age of log t = 8.6\pm0.1 (400 Myr). Our optical photometry and JHK from 2MASS are combined to derive effective temperatures of cluster member stars. The effective temperature distribution along the main sequence of the cluster shows several gaps. A test to study the significance of these gaps in the main sequence of the HR diagram has been applied. The method is also applied to several other open clusters (Pleiades, Hyades, NGC 1817 and M 67) to construct a sequence of metallicities and ages. The comparison of the results of each cluster gives four gaps with high significance (one of them, centred at 4900 K, has not been previously reported).Comment: 11 pages, 8 figures, A&A in press. Corrected typos on Table

    The extended halo of NGC 2682 (M 67) from Gaia DR2

    Full text link
    Context: NGC 2682 is a nearby open cluster, approximately 3.5 Gyr old. Dynamically, most open clusters should dissolve on shorter timescales, of ~ 1 Gyr. Having survived until now, NGC 2682 was likely much more massive in the past, and is bound to have an interesting dynamical history. Aims: We investigate the spatial distribution of NGC 2682 stars to constrain its dynamical evolution, especially focusing on the marginally bound stars in the cluster outskirts. Methods: We use Gaia DR2 data to identify NGC 2682 members up to a distance of ~150 pc (10 degrees). Two methods (Clusterix and UPMASK) are applied to this end. We estimate distances to obtain three-dimensional stellar positions using a Bayesian approach to parallax inversion, with an appropriate prior for star clusters. We calculate the orbit of NGC 2682 using the GRAVPOT16 software. Results: The cluster extends up to 200 arcmin (50 pc) which implies that its size is at least twice as previously believed. This exceeds the cluster Hill sphere based on the Galactic potential at the distance of NGC 2682. Conclusions: The extra-tidal stars in NGC 2682 may originate from external perturbations such as disk shocking or dynamical evaporation from two-body relaxation. The former origin is plausible given the orbit of NGC 2682, which crossed the Galactic disk ~40 Myr ago.Comment: 9 pages, 5 figures, accepted for publication on A&

    NGC 6705 a young α\alpha-enhanced Open Cluster from OCCASO data

    Full text link
    The stellar [α\alpha/Fe] abundance is sometimes used as a proxy for stellar age, following standard chemical evolution models for the Galaxy, as seen by different observational results. In this work we show that the Open Cluster NGC6705/M11 has a significant α\alpha-enhancement [α\alpha/Fe]>0.1>0.1 dex, despite its young age (∌\sim300 Myr), challenging the current paradigm. We use high resolution (R>65,000>65,000) high signal-to-noise (∌\sim70) spectra of 8 Red Clump stars, acquired within the OCCASO survey. We determine very accurate chemical abundances of several α\alpha elements, using an equivalent width methodology (Si, Ca and Ti), and spectral synthesis fits (Mg and O). We obtain [Si/Fe]=0.13±0.050.13\pm0.05, [Mg/Fe]=0.14±0.070.14\pm0.07, [O/Fe]=0.17±0.070.17\pm0.07, [Ca/Fe]=0.06±0.050.06\pm0.05 and [Ti/Fe]=0.03±0.030.03\pm0.03. Our results place these cluster within the group of young [α\alpha/Fe]-enhanced field stars recently found by several authors in the literature. The ages of our stars have an uncertainty of around 50 Myr, much more precise than for field stars. By integrating the cluster's orbit in several non-axisymmetric Galactic potentials, we establish the M11's most likely birth radius to lie between 6.8-7.5 kpc from the Galactic center, not far from its current position. With the robust Open Cluster age scale, our results prove that a moderate [α\alpha/Fe]-enhancement is no guarantee for a star to be old, and that not all α\alpha-enhanced stars can be explained with an evolved blue straggler scenario. Based on our orbit calculations, we further argue against a Galactic bar origin of M11.Comment: 10 pages, 6 figures, accepted in A&

    NGC 1605 is not a binary cluster

    Get PDF
    Stars and planetary system

    The multiplicity fraction in 202 open clusters from Gaia

    Get PDF
    In this study, we estimate the fraction of binaries with high mass ratios for 202 open clusters in the extended solar neighbourhood (closer than 1.5 kpc from the Sun). This is one of the largest homogeneous catalogues of multiplicity fractions in open clusters to date, including the unresolved and total (close-binary) multiplicity fractions of main-sequence systems with mass ratio larger than 0.6−0.15+0.050.6_{-0.15}^{+0.05}. The unresolved multiplicity fractions are estimated applying a flexible mixture model to the observed Gaia colour-magnitude diagrams of the open clusters. Then we use custom Gaia simulations to account for the resolved systems and derive the total multiplicity fractions. The studied open clusters have ages between 6.6 Myr and 3.0 Gyr and total high-mass-ratio multiplicity fractions between 6% and 80%, with a median of 18%. The multiplicity fractions increase with the mass of the primary star, as expected. The average multiplicity fraction per cluster displays an overall decreasing trend with the open cluster age up to ages about 100 Myr, above which the trend increases. Our simulations show that most of this trend is caused by complex selection effects (introduced by the mass dependence of the multiplicity fraction and the magnitude limit of our sample). Furthermore, the multiplicity fraction is not significantly correlated with the clusters' position in the Galaxy. The spread in multiplicity fraction decreases significantly with the number of cluster members (used as a proxy for cluster mass). We also find that the multiplicity fraction decreases with metallicity, in line with recent studies using field stars.Comment: 17 pages, 13 figures, resubmitted to A&A following referee comment
    • 

    corecore