8 research outputs found

    Localized Random Lasing Modes and a New Path for Observing Localization

    Full text link
    We demonstrate that a knowledge of the density-of-states and the eigenstates of a random system without gain, in conjunction with the frequency profile of the gain, can accurately predict the mode that will lase first. Its critical pumping rate can be also obtained. It is found that the shape of the wavefunction of the random system remains unchanged as gain is introduced. These results were obtained by the time-independent transfer matrix method and finite-difference-time-domain (FDTD) methods. They can be also analytically understood by generalizing the semi-classical Lamb theory of lasing in random systems. These findings provide a new path for observing the localization of light, such as looking for mobility edge and studying the localized states. %inside the random systems..Comment: Sent to PRL. 3 figure

    Perturbative Computation of the Gluonic Effective Action via Polyaokov's World-Line Path Integral

    Full text link
    The Polyakov world-line path integral describing the propagation of gluon field quanta is constructed by employing the background gauge fixing method and is subsequently applied to analytically compute the divergent terms of the one (gluonic) loop effective action to fourth order in perturbation theory. The merits of the proposed approach is that, to a given order, it reduces to performing two integrations, one over a set of Grassmann and one over a set of Feynman-type parameters through which one manages to accomodate all Feynman diagrams entering the computation at once.Comment: 21 page

    Molecular Hybridization as a Tool for Designing Multitarget Drug Candidates for Complex Diseases

    No full text
    corecore