134 research outputs found
Influence of Graphene and Graphene Oxide on Properties of Spark Plasma Sintered Si3N4 Ceramic Matrix
The sintering of ceramic matrix composites is usually carried out by raising the sintering temperature below the melting point of components. Spark plasma sintering (SPS) has the capability to densify ceramics at a relatively low temperature in a very short time. Two different additions, multilayered graphene (MLG) and graphene oxide (GrO), were added to Si3N4 ceramic matrix in various amount; 5 wt% and 30 wt%. The influence of reinforcing phase on final properties of spark plasma sintered Si3N4 composite was studied. The uniaxial-pressure-assisted SPS sintering resulted in a preferential alignment of both type of graphene in the Si3N4 ceramic matrix, leading to highly anisotropic properties with lower mechanical behavior but better tribological and electrical properties
The Effect of the Chemical Composition to the End-Properties of Ceramic Dispersed Strengthened 316L/Y2O3 Composites
In this paper the influence of chemical composition to the end-properties of ceramic dispersed strengthened 316L/Y2O3 composites ceramic has been studied. Two various compositions were studied and compared to reference 316L sintered sample. These two compositions are 316L/0.33 wt% Y2O3 and 316L/1 wt% Y2O3. The high-efficient attrition milling has been used for grain size reduction and oxide distribution in the austenitic matrices. Spark Plasma Sintering (SPS) was used as fast compaction method of the milled powders in order to avoid excessive grain growth. In this work it was found that changing the chemical composition by increase of the Y2O3 addition in the composite matrix improves the milling efficiency, increases the hardness of the 316L and reduces significantly the wear rate
Calcium Phosphate Based Bioactive Ceramic Layers on Implant Materials Preparation, Properties, and Biological Performance
Calcium phosphate based bioactive ceramics (CPCs) can be successfully applied as implant coatings since they are chemically similar to the inorganic constituent of hard tissues (bones, teeth). Nowadays, in orthopedic surgeries, it is still common to use metallic implants. However, the biological response of the human body to these foreign materials can be adverse, causing the failure of implant materials. This disadvantage can be avoided by bioactive coatings on the surface of implants. CPCs can be prepared by different routes that provide coatings of different quality and properties. In our paper, we compared the morphological, chemical, and biological properties of CPC coatings prepared by the pulse current electrochemical method. The size and thickness of the pulse current deposited platelets largely depended on the applied parameters such as the length of ton and the current density. The decrease in the ton/toff ratio resulted in thinner, more oriented platelets, while the increase in current density caused a significant decrease in grain size. The higher pH value and the heat treatment favored the phase transformation of CPCs from monetite to hydroxyapatite. The contact angle measurements showed increased hydrophilicity of the CPC sample as well as better biocompatibility compared to the uncoated implant material
Korszerű kerámiák kutatása és fejlesztése
A szilĂciumnitrid jĂłl ismert, mint kis sűrűsĂ©ggel, nagy szilárdsággal, kiválĂł hĹ‘-sokkállĂłsággal rendelkezĹ‘ kerámia. Az emlĂtett tulajdonságok kombináciĂłjával rendelkezĹ‘ szilĂciumnitrid alapĂş kerámiák ideális jelöltek több alkalmazásra (dugattyĂşk, vágĂłszerszámok stb.) magas hĹ‘mĂ©rsĂ©kleten is. A szilĂciumnitrid esetĂ©ben, az elĹ‘nyösebb mechanikai Ă©s tulajdonságok elĂ©rĂ©sĂ©t segĂti, egy finomszemcsĂ©s mikrostruktĂşra kialakĂtása, amely egyĂşttal megnyĂşlt bĂ©ta szilĂciumnitrid szemcsĂ©ket (β-Si3N4) tartalmaz. A monolitikus kerámiákkal összehasonlĂtva, az in-situ kialakult vagy ex-situ adalĂ©kolt β- Si3N4-et tartalmazĂł anyag nagyobb szĂvĂłssággal rendelkezik. A szilĂciumnitrid mátrixot mĂ©g szilĂciumkarbid, szĂ©nszál vagy szĂ©n nanocsĹ‘ hozzáadásával is erĹ‘sĂtettĂĽk, illetve növeltĂĽk a szĂvĂłsságát Ă©s elektromos vezetĹ‘kĂ©pessĂ©gĂ©t
HYBRID ALUMINUM MATRIX COMPOSITES PREPARED BY SPARK PLASMA SINTERING (SPS)
Aluminum Matrix composites have been intensively investigated over a long time due to their unique combination of beneficial properties
including low density, high strength to weight ratio, increased hardness, advantageous tribology, corrosion resistance, etc. In the present
work we studied the combined effect of various reinforcing phases including Al2O3, SiC, Si3N4 and graphene on the aluminum matrix. The
composites were fabricated by powder metallurgical method, in which the powder blend was rapidly sintered by spark plasma sintering.
The main conclusion was that hybrid composite can perform better only if the development of porosity is eliminated by improving the
wettability of the reinforcing particles
SUBMICRON SIZED SINTERED ODS STEELS PREPARED BY HIGH EFFICIENT ATTRITION MILLING AND SPARK PLASMA SINTERING
ABSTRACTThis paper summarizes recent results for preparation, structural and mechanical investigation of oxide dispersed strengthened steel (ODS). Three commercial steel powders, two austenitic steel and one martensitic powders have been used as starting materials. One of the austenitic powders was used for morphological study during wet milling. The high efficient attrition mills are on the basis of this work assuring grains with nanostructure. The morphological changes during milling steps have been described. It was demonstrated that 4 hours milling in wet atmosphere are enough to realize steel powders with submicron dimensions. An efficient dispersion of nanosized oxides in ODS steels was achieved by employing high efficiency attrition milling. A combined wet and dry milling process of fine ceramic and steel particles has been proposed. Spark Plasma Sintering (SPS) was applied to realize submicron grained steel compacts. Grains with 100 nm mean size have been observed by scanning electron microscopy (SEM) in sintered austenitic ODS. In comparison, the sintered martensitic dry and combined milled ODS microstructure consisted of grain sizes with 100-300 nm in each case.KEYWORDS: ODS Steel, Spark Plasma Sintering (SPS), attrition milling, Nano-oxides, structural and mechanical investigationRESUMECet article résume des résultats récents relatifs à l’élaboration et la caractérisation structurale et mécanique d’un acier renforcé à l'oxyde (nuance appelée souvent ROD/ODS). Trois poudres commerciales d'acier, deux poudres austénitiques et une poudre martensitique ont été utilisées comme matières d’étude. Une des poudres austénitiques a été utilisée pour l'étude morphologique lors du broyage humide. Le broyage à haute efficacité est sur la base de ce travail assurant l’obtention de grains nanostructurés. Les modifications morphologiques au cours des étapes de broyage ont été bien décrites. Il a été démontré que 4 heures de broyage en atmosphère humide sont suffisantes pour réaliser des poudres d'acier de dimensions submicroniques. Une dispersion efficace des nano-oxydes dans les aciers ROD/ODS a été obtenue en utilisant un broyage spécifique. On a proposé un procédé de broyage humide et sec combiné à des particules de céramique et d'acier. La méthode de frittage par étincelle (spark plasma sintering (SPS)) a été appliquée pour élaborer des aciers compacts à grains submicroniques. Des grains ayant une taille moyenne de 100 nm ont été observés par microscopie électronique à balayage (MEB) dans les aciers ROD/ODS austénitiques frittées. En comparaison, la microstructure de l’acier ROD/ODS martensitique frittée a donné des grains de tailles de 100 à 300 nm dans les deux cas de broyage sec et de broyage combiné (humide et sec)
- …