3 research outputs found

    Cryo-EM structure of human Pol κ bound to DNA and mono-ubiquitylated PCNA

    Get PDF
    Y-family DNA polymerase κ (Pol κ) can replicate damaged DNA templates to rescue stalled replication forks. Access of Pol κ to DNA damage sites is facilitated by its interaction with the processivity clamp PCNA and is regulated by PCNA mono-ubiquitylation. Here, we present cryo-EM reconstructions of human Pol κ bound to DNA, an incoming nucleotide, and wild type or mono-ubiquitylated PCNA (Ub-PCNA). In both reconstructions, the internal PIP-box adjacent to the Pol κ Polymerase-Associated Domain (PAD) docks the catalytic core to one PCNA protomer in an angled orientation, bending the DNA exiting the Pol κ active site through PCNA, while Pol κ C-terminal domain containing two Ubiquitin Binding Zinc Fingers (UBZs) is invisible, in agreement with disorder predictions. The ubiquitin moieties are partly flexible and extend radially away from PCNA, with the ubiquitin at the Pol κ-bound protomer appearing more rigid. Activity assays suggest that, when the internal PIP-box interaction is lost, Pol κ is retained on DNA by a secondary interaction between the UBZs and the ubiquitins flexibly conjugated to PCNA. Our data provide a structural basis for the recruitment of a Y-family TLS polymerase to sites of DNA damage.This research was supported by King Abdullah University of Science and Technology through core funding (to S.M.H.) and the Competitive Research Award Grant CRG8 URF/1/4036‐01‐01 (to S.M.H. and A.D.B.), and by the Wellcome Trust (to A.D.B.). R.C. acknowledges funding from the MINECO (CTQ2016-78636-P) and to AGAUR, (2017 SGR 324). The MD project has been carried out using CSUC resources. We acknowledge The Midlands Regional Cryo-EM Facility at the Leicester Institute of Structural and Chemical Biology (LISCB), major funding from MRC (MC_PC_17136). We thank Christos Savva (LISCB, University of Leicester) for his help in cryo-EM data collection and advice on data processing.Peer reviewe

    Development of a genotype independent and transformation amenable regeneration system from shoot apex in rice (Oryza sativa spp. indica) using TDZ

    Get PDF
    Agrobacterium-mediated transformation of indica rice has been established in only a limited number of cultivars because the regeneration of plants from transformed embryogenic calli is highly cultivar-specific. Establishment of a highly efficient plant regeneration system from shoot apex explants applicable to many cultivars of indica rice will accelerate the application of transformation technology in breeding programs and functional genomics study. We established an efficient shoot multiplication and plant regeneration system from shoot apices of indica rice using thidiazuron (TDZ) as a plant growth regulator. Shoot apices cultured on MS basal medium devoid of plant growth regulators formed solitary shoots in 90% of cultures. Addition of TDZ or benzylaminopurine to regeneration medium significantly influenced formation of multiple shoots directly from shoot apex explants without an intervening callus stage. Best shoot proliferation response (10.3 shoots per explant) was recorded when shoot apices were cultured on media supplemented with 4 mg/l TDZ. No synergistic effect on shoot proliferation was observed when indole-3-acetic acid and indole-3-butyric acid were supplemented to media containing 4 mg/l TDZ. The regeneration system was efficient in evoking multiple shoot proliferation in eight different cultivars of indica rice. Shoots were rooted in MS basal medium and plantlets were acclimatized with 100% survival rate. The shoot apex explants of all the eight cultivars of indica rice were found competent to Agrobacterium-mediated transformation while explants from IR-64 showed highest transient GUS expression. This variety-independent transformation amenable regeneration system from shoot apices may widely be applicable for genetic transformation of indica varieties
    corecore