81 research outputs found

    Variation in the molecular weight of Photobacterium damselae subsp. piscicida antigens when cultured under different conditions in vitro

    Get PDF
    The antigenicity of Photobacterium damselae (Ph. d.) subsp. piscicida, cultured in four different growth media [tryptone soya broth (TSB), glucose-rich medium (GRM), iron-depleted TSB (TSB + IR-), and iron-depleted GRM (GRM + IR-)] was compared by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis using sera obtained from sea bass (Dicentrarchus labrax) raised against live or heat-killed Ph. d. subsp. piscicida. The antigenic expression of Ph. d. subsp. piscicida was found to differ depending on the culture medium used. A significantly higher antibody response was obtained with iron-depleted bacteria by ELISA compared with non-iron depleted bacteria obtained from the sera of sea bass raised against live Ph. d. subsp. piscicida. The sera from sea bass raised against live bacteria showed a band at 22 kDa in bacteria cultured in TSB + IR- or GRM+ IR- when bacteria that had been freshly isolated from fish were used for the screening, while bands at 24 and 47 kDa were observed with bacteria cultured in TSB or GRM. When bacteria were passaged several times on tryptic soya agar prior to culturing in the four different media, only bands at 24 and 47 kDa were recognized, regardless of the medium used to culture the bacteria. It would appear that the molecular weight of Ph. d. subsp. piscicida antigens change in the presence of iron restriction, and sera from sea bass infected with live bacteria are able to detect epitopes on the antigens after this shift in molecular weight

    In vivo morphological and antigenic characteristics of Photobacterium damselae subsp. piscicida

    Get PDF
    The present study was conducted to examine the morphology and antigenicity of Photobacterium damselae subsp. piscicida by culturing the bacterium in vivo in the peritoneal cavity of sea bass (Dicentrarchus labrax) within dialysis bags with either a low molecular weight (LMW) cut-off of 25 kDa or a high molecular weight (HMW) cut-off of 300 kDa. Differences were observed in the growth rate between the bacteria cultured in vivo or in vitro. Bacteria cultured in vivo were smaller and produced a capsular layer, which was more prominent in bacteria cultured in the HMW bag. Antigenicity was examined by Western blot analysis using sera from sea bass injected with live Ph. d. subsp. piscicida. The sera recognised bands at 45 and 20 kDa in bacteria cultured in vivo in the LMW bag. Bacteria cultured in vivo in the HMW bag did not express the 45 kDa band when whole cell extracts were examined, although the antigen was present in their extracellular products. In addition, these bacteria had a band at 18 kDa rather than 20 kDa. Differences in glycoprotein were also evident between bacteria cultured in vitro and in vivo. Bacteria cultured in vitro in LMW and HMW bags displayed a single 26 kDa band. Bacteria cultured in the LMW bag in vivo displayed bands at 26 and 27 kDa, while bacteria cultured in vivo in the HMW bag possessed only the 27 kDa band. These bands may represent sialic acid. The significance of the changes observed in the bacterium's structure and antigenicity when cultured in vivo is discussed

    Insulin-like signalling influences the coordination of larval hemocyte number with body size in Drosophila melanogaster

    Get PDF
    Blood cells, known as hemocytes in invertebrates, play important and conserved roles in immunity, wound healing and tissue remodelling. The control of hemocyte number is therefore critical to ensure these functions are not compromised, and studies using Drosophila melanogaster are proving useful for understanding how this occurs. Recently, the embryonic patterning gene, torso-like (tsl), was identified as being required both for normal hemocyte development and for providing immunity against certain pathogens. Here, we report that Tsl is required specifically during the larval phase of hematopoiesis, and that tsl mutant larvae likely have reduced hemocyte numbers due to a reduced larval growth rate and compromised insulin signaling. Consistent with this, we find that impairing insulin-mediated growth, either by nutrient deprivation or genetically, results in fewer hemocytes. This is likely the result of impaired insulin-like signaling in the hemocytes themselves, since modulation of Insulin-like Receptor (InR) activity specifically in hemocytes causes concomitant changes to their population size in developing larvae. Taken together, our work reveals the strong relationship that exists between body size and hemocyte number, and suggests that insulin-like signaling contributes to, but is not solely responsible for, keeping these tightly aligned during larval development

    Semiconductor Optical Amplifier (SOA)–Based Amplification of Intensity-Modulated Optical Pulses — Deterministic Timing Jitter and Pulse Peak Power Equalization Analysis

    Get PDF
    During the last few years, large-scale efforts towards realizing high-photonic integration densities have put SOAs in the spotlight once again. Hence, the need to develop a complete framework for SOA-induced signal distortion to accurately evaluate a system’s performance has now become evident. To cope with this demand, we present a detailed theoretical and experimental investigation of the deterministic timing jitter and the pulse peak power equalization of SOA-amplified intensity-modulated optical pulses. The deterministic timing jitter model relies on the pulse mean arrival time estimation and its analytic formula reveals an approximate linear relationship between the deterministic timing jitter and the logarithmic values of intensity modulation when the SOA gain recovery time is faster than the pulse period. The theoretical analysis also arrives at an analytic expression for the intensity modulation reduction (IMR), which clearly elucidates the pulse peak power equalization mechanism of SOA. The IMR analysis shows that the output intensity modulation depth is linearly related to the respective input modulation depth of the optical pulses when the gain recovery time is faster than the pulse period. This novel theoretical platform provides a qualitative and quantitative insight into the SOA performance in case of intensity-modulated optical pulses

    High-speed electronics for short-link communication

    Get PDF
    High-speed electronic integrated circuits are essential to the development of new fiber-optic communication systems. Close integration and co-design of photonic and electronic devices are becoming more and more a necessity to realize the best performance trade-offs. This paper presents our most recent results and a brief introduction to our research in recently started EU projects

    Correction to: Two years later: Is the SARS-CoV-2 pandemic still having an impact on emergency surgery? An international cross-sectional survey among WSES members

    Get PDF
    Background: The SARS-CoV-2 pandemic is still ongoing and a major challenge for health care services worldwide. In the first WSES COVID-19 emergency surgery survey, a strong negative impact on emergency surgery (ES) had been described already early in the pandemic situation. However, the knowledge is limited about current effects of the pandemic on patient flow through emergency rooms, daily routine and decision making in ES as well as their changes over time during the last two pandemic years. This second WSES COVID-19 emergency surgery survey investigates the impact of the SARS-CoV-2 pandemic on ES during the course of the pandemic. Methods: A web survey had been distributed to medical specialists in ES during a four-week period from January 2022, investigating the impact of the pandemic on patients and septic diseases both requiring ES, structural problems due to the pandemic and time-to-intervention in ES routine. Results: 367 collaborators from 59 countries responded to the survey. The majority indicated that the pandemic still significantly impacts on treatment and outcome of surgical emergency patients (83.1% and 78.5%, respectively). As reasons, the collaborators reported decreased case load in ES (44.7%), but patients presenting with more prolonged and severe diseases, especially concerning perforated appendicitis (62.1%) and diverticulitis (57.5%). Otherwise, approximately 50% of the participants still observe a delay in time-to-intervention in ES compared with the situation before the pandemic. Relevant causes leading to enlarged time-to-intervention in ES during the pandemic are persistent problems with in-hospital logistics, lacks in medical staff as well as operating room and intensive care capacities during the pandemic. This leads not only to the need for triage or transferring of ES patients to other hospitals, reported by 64.0% and 48.8% of the collaborators, respectively, but also to paradigm shifts in treatment modalities to non-operative approaches reported by 67.3% of the participants, especially in uncomplicated appendicitis, cholecystitis and multiple-recurrent diverticulitis. Conclusions: The SARS-CoV-2 pandemic still significantly impacts on care and outcome of patients in ES. Well-known problems with in-hospital logistics are not sufficiently resolved by now; however, medical staff shortages and reduced capacities have been dramatically aggravated over last two pandemic years
    • …
    corecore