300 research outputs found

    Black-Hole Solutions with Scalar Hair in Einstein-Scalar-Gauss-Bonnet Theories

    Full text link
    In the context of the Einstein-scalar-Gauss-Bonnet theory, with a general coupling function between the scalar field and the quadratic Gauss-Bonnet term, we investigate the existence of regular black-hole solutions with scalar hair. Based on a previous theoretical analysis, that studied the evasion of the old and novel no-hair theorems, we consider a variety of forms for the coupling function (exponential, even and odd polynomial, inverse polynomial, and logarithmic) that, in conjunction with the profile of the scalar field, satisfy a basic constraint. Our numerical analysis then always leads to families of regular, asymptotically-flat black-hole solutions with non-trivial scalar hair. The solution for the scalar field and the profile of the corresponding energy-momentum tensor, depending on the value of the coupling constant, may exhibit a non-monotonic behaviour, an unusual feature that highlights the limitations of the existing no-hair theorems. We also determine and study in detail the scalar charge, horizon area and entropy of our solutions.Comment: PdfLatex file, 29 Pages, 18 figures, the analysis was extended to study the scalar charge, horizon area and entropy of our solutions, comments added, typos corrected, version to appear in Physical Review

    Novel exact ultra-compact and ultra-sparse hairy black holes emanating from regular and phantom scalar fields

    Full text link
    In the framework of a simple gravitational theory that contains a scalar field minimally coupled to gravity, we investigate the emergence of analytic black-hole solutions with non-trivial scalar hair of secondary type. Although it is possible for one to obtain asymptotically (A)dS solutions using our setup, in the context of the present work, we are solely interested in asymptotically flat solutions. At first, we study the properties of static and spherically symmetric black-hole solutions emanating from both regular and phantom scalar fields. We find that the regular-scalar-field-induced solutions are solutions describing ultra-compact black holes, while the phantom scalar fields generate ultra-sparse black-hole solutions. The latter are black holes that can be potentially of very low density since, contrary to ultra-compact ones, their horizon radius is always greater than the horizon radius of the corresponding Schwarzschild black hole of the same mass. Then, we generalize the above static solutions to slowly rotating ones and compute their angular velocities explicitly. Finally, the study of the axial perturbations of the derived solutions takes place, in which we show that there is always a region in the parameter space of the free parameters of our theory that allows the existence of both ultra-compact and ultra-sparse black holes.Comment: 23 pages, 6 figures, an Appendix added, typos corrected, matches published versio

    Variation in the molecular weight of Photobacterium damselae subsp. piscicida antigens when cultured under different conditions in vitro

    Get PDF
    The antigenicity of Photobacterium damselae (Ph. d.) subsp. piscicida, cultured in four different growth media [tryptone soya broth (TSB), glucose-rich medium (GRM), iron-depleted TSB (TSB + IR-), and iron-depleted GRM (GRM + IR-)] was compared by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis using sera obtained from sea bass (Dicentrarchus labrax) raised against live or heat-killed Ph. d. subsp. piscicida. The antigenic expression of Ph. d. subsp. piscicida was found to differ depending on the culture medium used. A significantly higher antibody response was obtained with iron-depleted bacteria by ELISA compared with non-iron depleted bacteria obtained from the sera of sea bass raised against live Ph. d. subsp. piscicida. The sera from sea bass raised against live bacteria showed a band at 22 kDa in bacteria cultured in TSB + IR- or GRM+ IR- when bacteria that had been freshly isolated from fish were used for the screening, while bands at 24 and 47 kDa were observed with bacteria cultured in TSB or GRM. When bacteria were passaged several times on tryptic soya agar prior to culturing in the four different media, only bands at 24 and 47 kDa were recognized, regardless of the medium used to culture the bacteria. It would appear that the molecular weight of Ph. d. subsp. piscicida antigens change in the presence of iron restriction, and sera from sea bass infected with live bacteria are able to detect epitopes on the antigens after this shift in molecular weight
    • …
    corecore