7 research outputs found

    Momentum constraint relaxation

    Full text link
    Full relativistic simulations in three dimensions invariably develop runaway modes that grow exponentially and are accompanied by violations of the Hamiltonian and momentum constraints. Recently, we introduced a numerical method (Hamiltonian relaxation) that greatly reduces the Hamiltonian constraint violation and helps improve the quality of the numerical model. We present here a method that controls the violation of the momentum constraint. The method is based on the addition of a longitudinal component to the traceless extrinsic curvature generated by a vector potential w_i, as outlined by York. The components of w_i are relaxed to solve approximately the momentum constraint equations, pushing slowly the evolution toward the space of solutions of the constraint equations. We test this method with simulations of binary neutron stars in circular orbits and show that effectively controls the growth of the aforementioned violations. We also show that a full numerical enforcement of the constraints, as opposed to the gentle correction of the momentum relaxation scheme, results in the development of instabilities that stop the runs shortly.Comment: 17 pages, 10 figures. New numerical tests and references added. More detailed description of the algorithms are provided. Final published versio

    Binary black hole merger in the extreme mass ratio limit

    Get PDF
    We discuss the transition from quasi-circular inspiral to plunge of a system of two nonrotating black holes of masses m1m_1 and m2m_2 in the extreme mass ratio limit m1m2≪(m1+m2)2m_1m_2\ll (m_1+m_2)^2. In the spirit of the Effective One Body (EOB) approach to the general relativistic dynamics of binary systems, the dynamics of the two black hole system is represented in terms of an effective particle of mass μ≡m1m2/(m1+m2)\mu\equiv m_1m_2/(m_1+m_2) moving in a (quasi-)Schwarzschild background of mass M≡m1+m2M\equiv m_1+m_2 and submitted to an O(μ){\cal O}(\mu) radiation reaction force defined by Pad\'e resumming high-order Post-Newtonian results. We then complete this approach by numerically computing, \`a la Regge-Wheeler-Zerilli, the gravitational radiation emitted by such a particle. Several tests of the numerical procedure are presented. We focus on gravitational waveforms and the related energy and angular momentum losses. We view this work as a contribution to the matching between analytical and numerical methods within an EOB-type framework.Comment: 14 pages, six figures. Revised version. To appear in the CQG special issue based around New Frontiers in Numerical Relativity conference, Golm (Germany), July 17-21 200

    Are moving punctures equivalent to moving black holes?

    Get PDF
    When simulating the inspiral and coalescence of a binary black-hole system, special care needs to be taken in handling the singularities. Two main techniques are used in numerical-relativity simulations: A first and more traditional one ``excises'' a spatial neighbourhood of the singularity from the numerical grid on each spacelike hypersurface. A second and more recent one, instead, begins with a ``puncture'' solution and then evolves the full 3-metric, including the singular point. In the continuum limit, excision is justified by the light-cone structure of the Einstein equations and, in practice, can give accurate numerical solutions when suitable discretizations are used. However, because the field variables are non-differentiable at the puncture, there is no proof that the moving-punctures technique is correct, particularly in the discrete case. To investigate this question we use both techniques to evolve a binary system of equal-mass non-spinning black holes. We compare the evolution of two curvature 4-scalars with proper time along the invariantly-defined worldline midway between the two black holes, using Richardson extrapolation to reduce the influence of finite-difference truncation errors. We find that the excision and moving-punctures evolutions produce the same invariants along that worldline, and thus the same spacetimes throughout that worldline's causal past. This provides convincing evidence that moving-punctures are indeed equivalent to moving black holes.Comment: 4 pages, 3 eps color figures; v2 = major revisions to introduction & conclusions based on referee comments, but no change in analysis or result

    Towards absorbing outer boundaries in General Relativity

    Get PDF
    We construct exact solutions to the Bianchi equations on a flat spacetime background. When the constraints are satisfied, these solutions represent in- and outgoing linearized gravitational radiation. We then consider the Bianchi equations on a subset of flat spacetime of the form [0,T] x B_R, where B_R is a ball of radius R, and analyze different kinds of boundary conditions on \partial B_R. Our main results are: i) We give an explicit analytic example showing that boundary conditions obtained from freezing the incoming characteristic fields to their initial values are not compatible with the constraints. ii) With the help of the exact solutions constructed, we determine the amount of artificial reflection of gravitational radiation from constraint-preserving boundary conditions which freeze the Weyl scalar Psi_0 to its initial value. For monochromatic radiation with wave number k and arbitrary angular momentum number l >= 2, the amount of reflection decays as 1/(kR)^4 for large kR. iii) For each L >= 2, we construct new local constraint-preserving boundary conditions which perfectly absorb linearized radiation with l <= L. (iv) We generalize our analysis to a weakly curved background of mass M, and compute first order corrections in M/R to the reflection coefficients for quadrupolar odd-parity radiation. For our new boundary condition with L=2, the reflection coefficient is smaller than the one for the freezing Psi_0 boundary condition by a factor of M/R for kR > 1.04. Implications of these results for numerical simulations of binary black holes on finite domains are discussed.Comment: minor revisions, 30 pages, 6 figure
    corecore