4,627 research outputs found

    Pollution in the open oceans: 2009-2013

    Get PDF
    This review of pollution in the open oceans updates a report on this topic prepared by GESAMP five years previously (Reports and Studies No. 79, GESAMP, 2009). The latter report, the first from GESAMP focusing specifically on the oceans beyond the 200 m depth contour, was prepared for purposes of the Assessment of Assessments, the preparatory phase of a regular process for assessing the state of the marine environment, led jointly by the United Nations Environment Programme (UNEP) and the Intergovernmental Oceanographic Commission (UNESCO-IOC)

    Time-Sliced Quantum Circuit Partitioning for Modular Architectures

    Full text link
    Current quantum computer designs will not scale. To scale beyond small prototypes, quantum architectures will likely adopt a modular approach with clusters of tightly connected quantum bits and sparser connections between clusters. We exploit this clustering and the statically-known control flow of quantum programs to create tractable partitioning heuristics which map quantum circuits to modular physical machines one time slice at a time. Specifically, we create optimized mappings for each time slice, accounting for the cost to move data from the previous time slice and using a tunable lookahead scheme to reduce the cost to move to future time slices. We compare our approach to a traditional statically-mapped, owner-computes model. Our results show strict improvement over the static mapping baseline. We reduce the non-local communication overhead by 89.8\% in the best case and by 60.9\% on average. Our techniques, unlike many exact solver methods, are computationally tractable.Comment: Appears in CF'20: ACM International Conference on Computing Frontier

    Disorder induced Dirac-point physics in epitaxial graphene from temperature-dependent magneto-transport measurements

    Get PDF
    We report a study of disorder effects on epitaxial graphene in the vicinity of the Dirac point by magneto-transport. Hall effect measurements show that the carrier density increases quadratically with temperature, in good agreement with theoretical predictions which take into account intrinsic thermal excitation combined with electron-hole puddles induced by charged impurities. We deduce disorder strengths in the range 10.2 \sim 31.2 meV, depending on the sample treatment. We investigate the scattering mechanisms and estimate the impurity density to be 3.09.1×10103.0 \sim 9.1 \times 10^{10} cm2^{-2} for our samples. An asymmetry in the electron/hole scattering is observed and is consistent with theoretical calculations for graphene on SiC substrates. We also show that the minimum conductivity increases with increasing disorder potential, in good agreement with quantum-mechanical numerical calculations.Comment: 6 pages, 3 figure

    Local and systemic in vivo responses to osseointegrative titanium nanotube surfaces

    Get PDF
    Orthopedic implants requiring osseointegration are often surface modified; however, implants may shed these coatings and generate wear debris leading to complications. Titanium nanotubes (TiNT), a new surface treatment, may promote osseointegration. In this study, in vitro (rat marrow-derived bone marrow cell attachment and morphology) and in vivo (rat model of intramedullary fixation) experiments characterized local and systemic responses of two TiNT surface morphologies, aligned and trabecular, via animal and remote organ weight, metal ion, hematologic, and nondecalcified histologic analyses. In vitro experiments showed total adherent cells on trabecular and aligned TiNT surfaces were greater than control at 30 min and 4 h, and cells were smaller in diameter and more eccentric. Control animals gained more weight, on average; however, no animals met the institutional trigger for weight loss. No hematologic parameters (complete blood count with differential) were significantly different for TiNT groups vs. control. Inductively coupled plasma mass spectrometry (ICP-MS) showed greater aluminum levels in the lungs of the trabecular TiNT group than in those of the controls. Histologic analysis demonstrated no inflammatory infiltrate, cytotoxic, or necrotic conditions in proximity of K-wires. There were significantly fewer eosinophils/basophils and neutrophils in the distal region of trabecular TiNT-implanted femora; and, in the midshaft of aligned TiNT-implanted femora, there were significantly fewer foreign body giant/multinucleated cells and neutrophils, indicating a decreased immune response in aligned TiNT-implanted femora compared to controls

    Diversity within the adenovirus fiber knob hypervariable loops influences primary receptor interactions

    Get PDF
    Adenovirus based vectors are of increasing importance for wide ranging therapeutic applications. As vaccines, vectors derived from human adenovirus species D serotypes 26 and 48 (HAdV-D26/48) are demonstrating promising efficacy as protective platforms against infectious diseases. Significant clinical progress has been made, yet definitive studies underpinning mechanisms of entry, infection, and receptor usage are currently lacking. Here, we perform structural and biological analysis of the receptor binding fiber-knob protein of HAdV-D26/48, reporting crystal structures, and modelling putative interactions with two previously suggested attachment receptors, CD46 and Coxsackie and Adenovirus Receptor (CAR). We provide evidence of a low affinity interaction with CAR, with modelling suggesting affinity is attenuated through extended, semi-flexible loop structures, providing steric hindrance. Conversely, in silico and in vitro experiments are unable to provide evidence of interaction between HAdV-D26/48 fiber-knob with CD46, or with Desmoglein 2. Our findings provide insight into the cell-virus interactions of HAdV-D26/48, with important implications for the design and engineering of optimised Ad-based therapeutics

    Defining “elite” status in sport: from chaos to clarity

    Get PDF
    The past two decades have seen a rapid rise in attention towards talent identification, athlete development and skill acquisition. However, there are important limitations to the evidentiary foundations of this field of research. For instance, variability in describing the performance levels of individuals has made it challenging to draw inferences about inter- and intrapopulation differences. More specifically, recent reviews on high performers in sport have noted considerable variation in how terms such as “elite” are used. This may be particularly concerning for researchers in high-performance disciplines, since they regularly struggle with small sample sizes and rely on research synthesis approaches (i.e. meta-analyses and systematic reviews) to inform evidence-based decisions. In this discussion piece, we (a) highlight issues with the application of current terminology, (b) discuss challenges in conceptualizing an improved framework and (c) provide several recommendations for researchers and practitioners working in this area
    corecore