3,256 research outputs found

    Highly Integrated THz Receiver Systems for Small Satellite Remote Sensing Applications

    Get PDF
    We are developing miniaturized, highly integrated Schottky receiver systems suitable for use in CubeSats or other small spacecraft platforms, where state-of-the-art performance and ultra-low mass, power, and volume are required. Current traditional Schottky receivers are too large to employ on a CubeSat. We will develop highly integrated receivers operating from 520-600 GHz and 1040-1200 GHz that are based on state-of-the-art receivers already developed at Jet Propulsion Laboratory (JPL) by using novel 3D multi layer packaging. This process will reduce both mass and volume by more than an order of magnitude, while preserving state-of-the-art noise performance. The resulting receiver systems will have a volume of approximately 25 x 25 x 40 millimeters (mm), a mass of 250 grams (g), and power consumption on the order of of 7 watts (W). Using these techniques, we will also integrate both receivers into a single frame, further reducing mass and volume for applications where dual band operation is advantageous. Additionally, as Schottky receivers offer significant gains in noise performance when cooled to 100 K, we will investigate the improvement gained by passively cooling these receivers. Work by Sierra Lobo Inc., with their Cryo Cube technology development program, offers the possibility of passive cooling to 100 K on CubeSat platforms for 1-unit (1U) sized instruments

    Demonstration of a Nano-Enabled Space Power System

    Get PDF
    The Nano-Enabled Space Power System will demonstrate power systems with nanomaterial-enhanced components as are placement for CubeSat power generation, transmission, and storage. Successful flights of these nano-power systems will accelerate the use of this revolutionary technology in the aerospace industry. The use of nano materials in solar cells, wire harnesses,and lithium ion batteries can increase the device performance without significantly altering the devices physical dimensions or the devices operating range (temperature,voltage, current). In many cases, the use of nanomaterials widens the viable range of operating conditions, such as increased depth of discharge of lithium ion batteries, tunable bandgaps in solar cells, and increased flexure tolerance of wire harnesses

    Distributed Timing and Localization (DiGiTaL)

    Get PDF
    The Distributed Timing and Localization (DiGiTaL) system provides nano satellite formations with unprecedented,centimeter-level navigation accuracy in real time and nanosecond-level time synchronization. This is achieved through the integration of a multi-constellation Global Navigation Satellite System (GNSS) receiver, a Chip-Scale Atomic Clock (CSAC), and a dedicated Inter-Satellite Link (ISL). In comparison, traditional single spacecraft GNSS navigation solutions are accurate only to the meter-level due to the sole usage of coarse pseudo-range measurements. To meet the strict requirements of future miniaturized distributed space systems, DiGiTaL uses powerful error-cancelling combinations of raw carrier-phase measurements which are exchanged between the swarming nano satellites through a decentralized network. A reduced-dynamics estimation architecture on board each individual nano satellite processes the resulting millimeter-level noise measurements to reconstruct the fullformation state with high accuracy

    Development of New Research-Quality Low-Resource Magnetometers for Small Satellites

    Get PDF
    Researchers from the University of Michigan (UM) and NASA Goddard Spaceflight Center (GSFC) are partnering to develop new types of magnetometers for use on future small satellites. These new instruments not only fulfill stringent requirements for low-amplitude and high-precision measurements, they are also enabling the team to develop a new approach to achieve high-quality magnetic measurements from space, without the need for a boom. Typically, space-based magnetometers are deployed on a boom that extends from the space vehicle to reduce exposure of magnetic noise emanating from the spacecraft, which could potentially contaminate measurements. The UMNASA team has developed algorithms to identify and eliminate spacecraft magnetic noise, which will allow placement of these economical, science-grade instrument magnetometers on and inside the satellite bus, instead of on a boom

    High Specific-Impulse Electrospray Explorer for Deep-Space (HiSPEED): Stage-Based Electrospray Propulsion System for CubeSats

    Get PDF
    The objective of the High Specific-impulse Electrospray Explorer for Deep-space (HiSPEED) project is to develop an efficient propulsion system to enable deep-space exploration with small satellites. The ion electrospray propulsion system developed at Massachusetts Institute of Technology's (MIT) Space Propulsion Laboratory is one of the first systems to offer compact and efficient propulsion that is compatible with the CubeSat form factor. However, existing thruster heads have lifetimes less than the required firing time for a deep-space mission. Therefore, a stage-based approach is considered where burnt out thruster heads are ejected and replaced, thereby extending the overall lifetime of the propulsion system

    Miniature Optical Communications Transceiver (MOCT)

    Get PDF
    This project will advance the technology readiness of the Miniature Optical Communications Transceiver (MOCT) from TRL 3 to TRL 4. MOCT consists of a novel software-defined pulse modulator (SDPM),integrated laser system, and avalanche photodetection system, and is designed for optical communications between small spacecraft, including CubeSats, using a pulse position modulation (PPM) scheme. PPM encodes data in the timing of optical pulses with respect to a set of timing windows known as slots. The MOCT design focuses on power-efficiency making it particularly interesting for small satellites. We have demonstrated in the laboratory that this technology can generate shorter than 1 nanosecond-wide 1550 nanometer (nm) optical pulses with better than 50 picosecond (ps) timing accuracy. The timing resolution of this system is roughly a factor of four better than previously flown systems, meaning that it can transmit more bits of data with each optical pulse. Because this technology can both generate and time stamp the arrival of short optical pulses with 50 ps precision, it simultaneously provides power efficient communications and relative ranging between small spacecraft at the centimeter (cm) level

    Development of Lightweight CubeSat with Multi-Functional Structural Battery Systems

    Get PDF
    This collaborative multi-disciplinary effort aims to develop a lightweight, 1-unit (1U) CubeSat (10x10x10 cm) which utilizes improved and fully integrated structural battery materials for mission life extension, larger payload capability, and significantly reduced mass.The electrolytic carbon fiber material serves the multifunctional capacitive energy system as both a lightweight, load bearing structure and an electrochemical battery system. This implementation will improve traditional multifunctional energy storage concepts with a highly effective energy storage capability

    Active Thermal Architecture for Cryogenic Optical Instrumentation (ATACOI)

    Get PDF
    The Active Thermal Architecture for Cryogenic Optical Instrumentation (ATACOI) project will demonstrate an advanced thermal control system for CubeSats and enable the use of cryogenic electro-optical instrumentation on small satellite platforms. Specifically, the project focuses on the development of a deployable solar tracking radiator, a rotationally flexible rotary union fluid joint, and a thermal/vibrational isolation system for miniature cryogenic detectors. This technology will represent a significant improvement over the current state of the art for CubeSat thermal control, which generally relies on simple passive and conductive methods

    Omnidirectional Inter-Satellite Optical Communicator (ISOC)

    Get PDF
    The objective of the Omnidirectional Inter-Satellite Optical Communicator (ISOC) project is to design a compact, lightweight,and energy efficient communicator module for use between satellites in space. This module will achieve continuous optical communication, with simultaneous data transmission and reception, at up to1 gigabit per second (Gbits) data rates for small spacecraft separated by up to 200 kilometers (kms). To achieve this goal,a data communicator with full spherical coverage field of view (FOV) needs to be designed. The proposed ISOC is a dodecahedron geometric array of chipscale, microelectromechanical systems (MEMS) based gimbal-less scanning mirrors that provide adjustable beam pointing and spherical FOV coverage for uninterrupted data transmission between several small spacecraft at arbitrary relative positions. This design eliminates known pointing issues and hence allows accurate direction of arrival calculations.Moreover, the proposed approach will enable data relaying between multiple satellites, and enable relative navigation control

    NASA Centers and Universities Collaborate in Annual Smallsat Technology Partnerships

    Get PDF
    The Small Spacecraft Technology program within the NASA Space Technology Mission Directorate sponsors the Smallsat Technology Partnerships (STP) initiative. The STP initiative awards cooperative agreements between NASA centers and university teams for technology development efforts that advance the capabilities of small spacecraft to achieve NASA mission objectives in unique and more affordable ways. NASA’s announcement to return humans to the Moon by 2024 raises new opportunities for Smallsats to contribute to missions in cislunar space, though technical challenges are to be overcome to establish their value in this environment. Precursor missions utilizing small spacecraft will blaze the trail for lunar exploration, establishing infrastructure such as communication and navigation networks, and performing assembly and repair services for larger structures and human habitats. To achieve these goals, certain novel Smallsat technologies will need to be developed and demonstrated. The 2020 STP solicitation sought proposals for specific technologies to enable these lunar missions. For the 2020 STP cycle, NASA selected nine university teams to mature new systems and capabilities in the laboratory, and in some cases, demonstrate in suborbital or orbital spaceflights. This paper describes the STP portfolio, past and present efforts, and the nine partnerships selected
    • …
    corecore