5,827 research outputs found

    Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity

    Get PDF
    TRIMCyps are anti-retroviral proteins that have arisen independently in New World and Old World primates. All TRIMCyps comprise a CypA domain fused to the tripartite domains of TRIM5α but they have distinct lentiviral specificities, conferring HIV-1 restriction in New World owl monkeys and HIV-2 restriction in Old World rhesus macaques. Here we provide evidence that Asian macaque TRIMCyps have acquired changes that switch restriction specificity between different lentiviral lineages, resulting in species-specific alleles that target different viruses. Structural, thermodynamic and viral restriction analysis suggests that a single mutation in the Cyp domain, R69H, occurred early in macaque TRIMCyp evolution, expanding restriction specificity to the lentiviral lineages found in African green monkeys, sooty mangabeys and chimpanzees. Subsequent mutations have enhanced restriction to particular viruses but at the cost of broad specificity. We reveal how specificity is altered by a scaffold mutation, E143K, that modifies surface electrostatics and propagates conformational changes into the active site. Our results suggest that lentiviruses may have been important pathogens in Asian macaques despite the fact that there are no reported lentiviral infections in current macaque populations

    The Tight Junction Associated Signalling Proteins ZO-1 and ZONAB Regulate Retinal Pigment Epithelium Homeostasis in Mice

    Get PDF
    Cell-cell adhesion regulates the development and function of epithelia by providing mechanical support and by guiding cell proliferation and differentiation. The tight junction (TJ) protein zonula occludens (ZO)-1 regulates cell proliferation and gene expression by inhibiting the activity of the Y-box transcription factor ZONAB in cultured epithelial cells. We investigated the role of this TJ-associated signalling pathway in the retinal pigment epithelium (RPE) in vivo by lentivirally-mediated overexpression of ZONAB, and knockdown of its cellular inhibitor ZO-1. Both overexpression of ZONAB or knockdown of ZO-1 resulted in increased RPE proliferation, and induced ultrastructural changes of an epithelial-mesenchymal transition (EMT)-like phenotype. Electron microscopy analysis revealed that transduced RPE monolayers were disorganised with increased pyknosis and monolayer breaks, correlating with increased expression of several EMT markers. Moreover, fluorescein angiography analysis demonstrated that the increased proliferation and EMT-like phenotype induced by overexpression of ZONAB or downregulation of ZO-1 resulted in RPE dysfunction. These findings demonstrate that ZO-1 and ZONAB are critical for differentiation and homeostasis of the RPE monolayer and may be involved in RPE disorders such as proliferative vitroretinopathy and atrophic age-related macular degeneration

    The Effect of Macular Hole Duration on Surgical Outcomes: An Individual Participant Data Study of Randomized Controlled Trials

    Get PDF
    Topic: To define the effect of symptom duration on outcomes in people undergoing surgery for idiopathic full-thickness macular holes (iFTMHs) by means of an individual participant data (IPD) study of randomized controlled trials (RCTs). The outcomes assessed were primary iFTMH closure and postoperative best-corrected visual acuity (BCVA). Clinical Relevance: Idiopathic full-thickness macular holes are visually disabling with a prevalence of up to 0.5%. Untreated BCVA is typically reduced to 20/200. Surgery can close holes and improve vision. Symptom duration is thought to affect outcomes with surgery, but the effect is unclear. Methods: A systematic review identified eligible RCTs that included adults with iFTMH undergoing vitrectomy with gas tamponade in which symptom duration, primary iFTMH closure, and postoperative BCVA were recorded. Bibliographic databases were searched for articles published between 2000 and 2020. Individual participant data were requested from eligible studies. Results: Twenty eligible RCTs were identified. Data were requested from all studies and obtained from 12, representing 940 eyes in total. Median symptom duration was 6 months (interquartile range, 3–10). Primary closure was achieved in 81.5% of eyes. There was a linear relationship between predicted probability of closure and symptom duration. Multilevel logistic regression showed each additional month of duration was associated with 0.965 times lower odds of closure (95% confidence interval [CI], 0.935–0.996, P = 0.026). Internal limiting membrane (ILM) peeling, ILM flap use, better preoperative BCVA, face-down positioning, and smaller iFTMH size were associated with increased odds of primary closure. Median postoperative BCVA in eyes achieving primary closure was 0.48 logarithm of the minimum angle of resolution (logMAR) (20/60). Multilevel logistic regression showed for eyes achieving primary iFTMH closure, each additional month of symptom duration was associated with worsening BCVA by 0.008 logMAR units (95% CI, 0.005–0.011, P < 0.001) (i.e., ∼1 Early Treatment Diabetic Retinopathy Study letter loss per 2 months). ILM flaps, intraocular tamponade using long-acting gas, better preoperative BCVA, smaller iFTMH size, and phakic status were also associated with improved postoperative BCVA. Conclusions: Symptom duration was independently associated with both anatomic and visual outcomes in persons undergoing surgery for iFTMH. Time to surgery should be minimized and care pathways designed to enable this

    Making sense of policy choices: understanding the roles of value predispositions, mass media, and cognitive processing in public attitudes toward nanotechnology

    Get PDF
    Using a nationally representative telephone survey of 1,015 adults in the United States, this study examines how value predispositions, communication variables, and perceptions of risks and benefits are associated with public support for federal funding of nanotechnology. Our findings show that highly religious individuals were less supportive of funding of nanotech than less religious individuals, whereas individuals who held a high deference for scientific authority were more supportive of funding of the emerging technology than those low in deference. Mass media use and elaborative processing of scientific news were positively associated with public support for funding, whereas factual scientific knowledge had no significant association with policy choices. The findings suggest that thinking about and reflecting upon scientific news promote better understanding of the scientific world and may provide a more sophisticated cognitive structure for the public to form opinions about nanotech than factual scientific knowledge. Finally, heuristic cues including trust in scientists and perceived risks and benefits of nanotech were found to be associated with public support for nanotech funding. We conclude with policy implications that will be useful for policymakers and science communication practitioners

    Assessment of the relative risk of water quality to ecosystems of the Great Barrier Reef. A report to the Department of the Environment and Heritage Protection, Queensland Government, Brisbane - Report 13/28

    Get PDF
    A risk assessment method was developed and applied to the Great Barrier Reef (GBR) to provide robust and scientifically defensible information for policy makers and catchment managers on the key land-based pollutants of greatest risk to the health of the two main GBR ecosystems (coral reefs and seagrass beds). This information was used to inform management prioritisation for Reef Rescue 2 and Reef Plan 3. The risk assessment method needed to take account of the fact that catchment-associated risk will vary with distance from the river mouth, with coastal habitats nearest to river mouths most impacted by poor marine water quality. The main water quality pollutants of concern for the GBR are enhanced levels of suspended sediments, excess nutrients and pesticides added to the GBR lagoon from the adjacent catchments. Until recently, there has been insufficient knowledge about the relative exposure to and effects of these pollutants to guide effective prioritisation of the management of their sources

    Advancing clinical trials for inherited retinal diseases: Recommendations from the second monaciano symposium

    Get PDF
    Major advances in the study of inherited retinal diseases (IRDs) have placed efforts to develop treatments for these blinding conditions at the forefront of the emerging field of precision medicine. As a result, the growth of clinical trials for IRDs has increased rapidly over the past decade and is expected to further accelerate as more therapeutic possibilities emerge and qualified participants are identified. Although guided by established principles, these specialized trials, requiring analysis of novel outcome measures and endpoints in small patient populations, present multiple challenges relative to study design and ethical considerations. This position paper reviews recent accomplishments and existing challenges in clinical trials for IRDs and presents a set of recommendations aimed at rapidly advancing future progress. The goal is to stimulate discussions among researchers, funding agencies, industry, and policy makers that will further the design, conduct, and analysis of clinical trials needed to accelerate the approval of effective treatments for IRDs, while promoting advocacy and ensuring patient safety

    Mutation screening of retinal dystrophy patients by targeted capture from tagged pooled DNAs and next generation sequencing.

    Get PDF
    Purpose: Retinal dystrophies are genetically heterogeneous, resulting from mutations in over 200 genes. Prior to the development of massively parallel sequencing, comprehensive genetic screening was unobtainable for most patients. Identifying the causative genetic mutation facilitates genetic counselling, carrier testing and prenatal/pre-implantation diagnosis, and often leads to a clearer prognosis. In addition, in a proportion of cases, when the mutation is known treatment can be optimised and patients are eligible for enrolment into clinical trials for gene-specific therapies. Methods: Patient genomic DNA was sheared, tagged and pooled in batches of four samples, prior to targeted capture and next generation sequencing. The enrichment reagent was designed against genes listed on the RetNet database (July 2010). Sequence data were aligned to the human genome and variants were filtered to identify potential pathogenic mutations. These were confirmed by Sanger sequencing. Results: Molecular analysis of 20 DNAs from retinal dystrophy patients identified likely pathogenic mutations in 12 cases, many of them known and/or confirmed by segregation. These included previously described mutations in ABCA4 (c.6088C>T,p.R2030*; c.5882G>A,p.G1961E), BBS2 (c.1895G>C,p.R632P), GUCY2D (c.2512C>T,p.R838C), PROM1 (c.1117C>T,p.R373C), RDH12 (c.601T>C,p.C201R; c.506G>A,p.R169Q), RPGRIP1 (c.3565C>T,p.R1189*) and SPATA7 (c.253C>T,p.R85*) and new mutations in ABCA4 (c.3328+1G>C), CRB1 (c.2832_2842+23del), RP2 (c.884-1G>T) and USH2A (c.12874A>G,p.N4292D). Conclusions: Tagging and pooling DNA prior to targeted capture of known retinal dystrophy genes identified mutations in 60% of cases. This relatively high success rate may reflect enrichment for consanguineous cases in the local Yorkshire population, and the use of multiplex families. Nevertheless this is a promising high throughput approach to retinal dystrophy diagnostics

    Modelling Blood Flow and Metabolism in the Preclinical Neonatal Brain during and Following Hypoxic-Ischaemia

    Get PDF
    Hypoxia-ischaemia (HI) is a major cause of neonatal brain injury, often leading to long-term damage or death. In order to improve understanding and test new treatments, piglets are used as preclinical models for human neonates. We have extended an earlier computational model of piglet cerebral physiology for application to multimodal experimental data recorded during episodes of induced HI. The data include monitoring with near-infrared spectroscopy (NIRS) and magnetic resonance spectroscopy (MRS), and the model simulates the circulatory and metabolic processes that give rise to the measured signals. Model extensions include simulation of the carotid arterial occlusion used to induce HI, inclusion of cytoplasmic pH, and loss of metabolic function due to cell death. Model behaviour is compared to data from two piglets, one of which recovered following HI while the other did not. Behaviourally-important model parameters are identified via sensitivity analysis, and these are optimised to simulate the experimental data. For the non-recovering piglet, we investigate several state changes that might explain why some MRS and NIRS signals do not return to their baseline values following the HI insult. We discover that the model can explain this failure better when we include, among other factors such as mitochondrial uncoupling and poor cerebral blood flow restoration, the death of around 40% of the brain tissue. Copyright

    Derivation of Human Differential Photoreceptor-like Cells from the Iris by Defined Combinations of CRX, RX and NEUROD

    Get PDF
    Examples of direct differentiation by defined transcription factors have been provided for beta-cells, cardiomyocytes and neurons. In the human visual system, there are four kinds of photoreceptors in the retina. Neural retina and iris-pigmented epithelium (IPE) share a common developmental origin, leading us to test whether human iris cells could differentiate to retinal neurons. We here define the transcription factor combinations that can determine human photoreceptor cell fate. Expression of rhodopsin, blue opsin and green/red opsin in induced photoreceptor cells were dependent on combinations of transcription factors: A combination of CRX and NEUROD induced rhodopsin and blue opsin, but did not induce green opsin; a combination of CRX and RX induced blue opsin and green/red opsin, but did not induce rhodopsin. Phototransduction-related genes as well as opsin genes were up-regulated in those cells. Functional analysis; i.e. patch clamp recordings, clearly revealed that generated photoreceptor cells, induced by CRX, RX and NEUROD, responded to light. The response was an inward current instead of the typical outward current. These data suggest that photosensitive photoreceptor cells can be generated by combinations of transcription factors. The combination of CRX and RX generate immature photoreceptors: and additional NEUROD promotes maturation. These findings contribute substantially to a major advance toward eventual cell-based therapy for retinal degenerative diseases
    corecore