2,648 research outputs found
Backscattered Electron (BSE) Imaging in the Scanning Electron Microscope (SEM) - Measurement of Surface Layer Mass-Thickness
Sometimes, the sample to be examined in the SEM will consist of a compositionally non-uniform substrate that is covered by an approximately uniform surface layer. With a low enough incident beam energy, only the surface layer can be seen in the SEM image. The underlying structure can be seen in the secondary electron (SE) image if the range of the incident electrons is greater than twice the thickness of the surface film. In the backscattered electron (BSE) image the threshold energy is higher because the BSE detector is insensitive to slow electrons. The information depth in the BSE image was investigated experimentally as a function of incident energy and BSE detector position using test specimens in which an Al layer of thickness either 210 or 1,100 nm was deposited onto an aluminised Si wafer covered by a pattern of gold lines. It was estimated that a lower limit to the surface mass-thickness that can be measured using a solid-state BSE detector is ~ I0ÎĽg/cm2 (=40 nm of Al) for the BSE method, as compared with ~ 0.25 ÎĽg/cm2 (=1 nm of Al) for the low-loss electron method. There would seem to be no reason why measurements by the BSE method could not be carried out automatically in a computer-controlled SEM equipped with image analysis and using the standard BSE detector systems, to measure the mass-thickness of a surface layer
Recommended from our members
Farmers’ attitudes to disease risk management in England: a comparative analysis of sheep and pig farmers
The UK Department for Environment, Food and Rural Affairs (Defra) identified practices to reduce the risk of animal disease outbreaks. We report on the response of sheep and pig farmers in England to promotion of these practices. A conceptual framework was established from research on factors influencing adoption of animal health practices, linking knowledge, attitudes, social influences and perceived constraints to the implementation of specific practices. Qualitative data were collected from nine sheep and six pig enterprises in 2011. Thematic analysis explored attitudes and responses to the proposed practices, and factors influencing the likelihood of implementation. Most feel they are doing all they can reasonably do to minimise disease risk and that practices not being implemented are either not relevant or ineffective. There is little awareness and concern about risk from unseen threats. Pig farmers place more emphasis than sheep farmers on controlling wildlife, staff and visitor management and staff training. The main factors that influence livestock farmers’ decision on whether or not to implement a specific disease risk measure are: attitudes to, and perceptions of, disease risk; attitudes towards the specific measure and its efficacy; characteristics of the enterprise which they perceive as making a measure impractical; previous experience of a disease or of the measure; and the credibility of information and advice. Great importance is placed on access to authoritative information with most seeing vets as the prime source to interpret generic advice from national bodies in the local context. Uptake of disease risk measures could be increased by: improved risk communication through the farming press and vets to encourage farmers to recognise hidden threats; dissemination of credible early warning information to sharpen farmers’ assessment of risk; and targeted information through training events, farming press, vets and other advisers, and farmer groups, tailored to the different categories of livestock farmer
Evolutionary history of the ADRB2 gene in humans
No abstract available
Summary of Almost 20 Years of Storm Overflight Electric Field, Conductivity, Flash Rate, and Current Statistics
We present total conduction (Wilson) currents for more than 1000 high-altitude aircraft overflights of electrified clouds acquired over nearly two decades. The overflights include a wide geographical sample of storms over land and ocean, with and without lightning, and with positive (i.e., upward-directed) and negative current. Peak electric field, with lightning transients removed, ranged from -1.0 kV/m to 16. kV/m, with mean (median) of 0.9 kV/m (0.29 kV/m). Total conductivity at flight altitude ranged from 0.6 pS/m to 3.6 pS/m, with mean and median of 2.2 pS/m. Peak current densities ranged from -2.0 nA m(exp -2) to 33.0 nA m(exp -2) with mean (median) of 1.9 nA m(exp -2) (0.6 nA m(exp -2)). Total upward current flow from storms in our dataset ranged from -1.3 to 9.4 A. The mean current for storms with lightning is 1.7 A over ocean and 1.0 A over land. The mean current for electrified shower clouds (i.e. electrified storms without lightning) is 0.41 A for ocean and 0.13 A for land. About 78% (43%) of the land (ocean) storms have detectable lightning. Land storms have 2.8 times the mean flash rate as ocean storms (2.2 versus 0.8 flashes min-1, respectively). Approximately 7% of the overflights had negative current. The mean and median currents for positive (negative) polarity storms are 1.0 and 0.35 A (-0.30 and -0.26 A). We found no regional or latitudinal-based patterns in our storm currents, nor support for simple scaling laws between cloud top height and lightning flash rate
Summary of Almost 20 Years of Storm Overflight Electric Field, Conductivity, Flash Rates, and Electric Current Statistics
We determined total conduction currents and flash rates for around 900 high-altitude aircraft overflights of electrified clouds over 17 years. The overflights include a wide geographical sample of storms over land and ocean, with and without lightning, and with positive (i.e., upward-directed) and negative current. Peak electric field, with lightning transients removed, ranged from -1.0 kV m(sup -1) to 16. kV m(sup -1), with mean (median) of 0.9 kV m(sup -1) (0.29 kV m(sup -1)). Total conductivity at flight altitude ranged from 0.6 pS m(sup -1) to 3.6 pS m(sup -1), with mean and median of 2.2 pS m(sup -1). Peak current densities ranged from -2.0 nA m(sup -2) to 33.0 nA m(sup -2) with mean (median) of 1.9 nA m(sup -2) (0.6 nA m(sup -2)). Total upward current flow from storms in our dataset ranged from -1.3 to 9.4 A. The mean current for storms with lightning is 1.6 A over ocean and 1.0 A over land. The mean current for electrified shower clouds (i.e. electrified storms without lightning) is 0.39 A for ocean and 0.13 A for land. About 78% (43%) of the land (ocean) storms have detectable lightning. Land storms have 2.8 times the mean flash rate as ocean storms (2.2 versus 0.8 flashes min(sup -1), respectively). Approximately 7% of the overflights had negative current. The mean and median currents for positive (negative) polarity storms are 1.0 and 0.35 A (-0.30 and -0.26 A). We found no regional or latitudinal-based patterns in our storm currents, nor support for simple scaling laws between cloud top height and lightning flash rate
Improved Semileptonic Form Factor Calculations in Lattice QCD
We investigate the computational efficiency of two stochastic based
alternatives to the Sequential Propagator Method used in Lattice QCD
calculations of heavy-light semileptonic form factors. In the first method, we
replace the sequential propagator, which couples the calculation of two of the
three propagators required for the calculation, with a stochastic propagator so
that the calculations of all three propagators are independent. This method is
more flexible than the Sequential Propagator Method but introduces stochastic
noise. We study the noise to determine when this method becomes competitive
with the Sequential Propagator Method, and find that for any practical
calculation it is competitive with or superior to the Sequential Propagator
Method. We also examine a second stochastic method, the so-called ``one-end
trick", concluding it is relatively inefficient in this context. The
investigation is carried out on two gauge field ensembles, using the
non-perturbatively improved Wilson-Sheikholeslami-Wohlert action with N_f=2
mass-degenerate sea quarks. The two ensembles have similar lattice spacings but
different sea quark masses. We use the first stochastic method to extract
-improved, matched lattice results for the semileptonic form
factors on the ensemble with lighter sea quarks, extracting f_+(0)
The prevalence of pseudoscientific ideas and neuromyths among sports coaches
There has been an exponential growth in research examining the neurological basis of human cognition and learning. Little is known, however, about the extent to which sports coaches are aware of these advances. Consequently, the aim of the present study was to examine the prevalence of pseudoscientific ideas among British and Irish sports coaches. In total, 545 coaches from the United Kingdom and Ireland completed a measure that included questions about how evidence-based theories of the brain might enhance coaching and learning, how they were exposed to these different theories, and their awareness of neuromyths. Results revealed that the coaches believed that an enhanced understanding of the brain helped with their planning and delivery of sports sessions. Goal-setting was the most frequently used strategy. Interestingly, 41.6% of the coaches agreed with statements that promoted neuromyths. The most prevalent neuromyth was “individuals learn better when they receive information in their preferred learning style (e.g., auditory, visual, or kinesthetic)”, which 62% of coaches believed. It is apparent that a relatively large percentage of coaches base aspects of their coaching practice on neuromyths and other pseudoscientific ideas. Strategies for addressing this situation are briefly discussed and include changing the content of coach education progra
On Evidence Weighted Mixture Classification
2005 Joint Annual Meeting of the Interface and the Classification Society of North America, St. Louis, Missouri, 8-12 June 2005Calculation of the marginal likelihood or evidence is a problem central to model selection and model averaging in a Bayesian framework. Many sampling methods, especially (Reversible Jump) Markov chain Monte Carlo techniques, have been devised to avoid explicit calculation of the evidence, but they are limited to models with a common parameterisation. It is desirable to extend model averaging to models with disparate architectures and parameterisations. In this paper we present a straightforward general computational scheme for calculating the evidence, applicable to any model for which samples can be drawn from the posterior distribution of parameters conditioned on the data. The scheme is demonstrated on a simple feature subset selection example
A Profile of Patients on ASA or NSAIDs Hospitalized with Gastrointestinal Perforations
BACKGROUND: In a recent clinical trial gastrointestinal tract perforations in patients on nonsteroidal anti-inflammatory drugs (NSAIDs) were found to occur with a frequency of 0.15%, and possibly to be reduced in patients concomitantly using the cytoprotective agent misoprostol
- …