11,931 research outputs found

    Annual and seasonal variations in the low-latitude topside ionosphere

    Get PDF

    Developing Decision Tree Models to Create a Predictive Blockage Likelihood Model for Real-World Wastewater Networks

    Get PDF
    To reduce the blockages occurring on wastewater networks, reducing costs, customer and environmental impact, greater levels of proactive maintenance are being conducted by water and sewerage companies. For effective prioritisation of this maintenance, an accurate model of blockage likelihood is required. This paper presents the development of a model, for provision of a blockage likelihood level and verification using unseen data, based on previous decision tree models constructed using the asset and historical incident data from the wastewater network of Dŵr Cymru Welsh Water. The model has been developed here using the geographical grouping of sewers and the application of ensemble techniques, with the results illustrating the potential benefits which can be derived from these techniques.The work has been conducted as part of a Knowledge Transfer Partnership (KTP) with funding provided by Innovate UK and Dŵr Cymru Welsh Water (DCWW), working in collaboration with the University of Exeter’s Centre for Water Systems (CWS)

    Annual and seasonal variations in the low-latitude topside ionosphere

    Full text link

    Non-invasive Brain Stimulation to Characterize and Alter Motor Function after Spinal Cord Injury

    Get PDF
    Advances in transcranial magnetic stimulation (TMS) now permit the precise assessment of circuitry in human motor cortices that contribute to movement. Further, TMS approaches are used to promote neural plasticity within cortical and spinal circuitry in an attempt to create short-term changes in motor control. This review is focused on the application of TMS techniques in the study of characterizing and promoting neural plasticity within individuals presenting with chronic spinal cord injury. We review TMS research performed in individuals with SCI and consider new opportunities for the use of TMS approaches to promote neural plasticity for improving motor recovery

    Vortex dynamics of a d+isd+is-wave superconductor

    Get PDF
    The vortex dynamics of a d+is-wave superconductor is studied numerically by simulating the time-dependent Ginzburg-Landau equations. The critical fields, the free flux flow, and the flux flow in the presence of twin-boundaries are discussed. The relaxation rate of the order parameter turns out to play an important role in the flux flow. We also address briefly the intrinsic Hall effect in d- and d+is-wave superconductors.Comment: 5 pages, 5 figure

    The Indirect Search for Dark Matter with IceCube

    Full text link
    We revisit the prospects for IceCube and similar kilometer-scale telescopes to detect neutrinos produced by the annihilation of weakly interacting massive dark matter particles (WIMPs) in the Sun. We emphasize that the astrophysics of the problem is understood; models can be observed or, alternatively, ruled out. In searching for a WIMP with spin-independent interactions with ordinary matter, IceCube is only competitive with direct detection experiments if the WIMP mass is sufficiently large. For spin-dependent interactions IceCube already has improved the best limits on spin-dependent WIMP cross sections by two orders of magnitude. This is largely due to the fact that models with significant spin-dependent couplings to protons are the least constrained and, at the same time, the most promising because of the efficient capture of WIMPs in the Sun. We identify models where dark matter particles are beyond the reach of any planned direct detection experiments while being within reach of neutrino telescopes. In summary, we find that, even when contemplating recent direct detection results, neutrino telescopes have the opportunity to play an important as well as complementary role in the search for particle dark matter.Comment: 17 pages, 10 figures, published in the New Journal of Physics 11 105019 http://www.iop.org/EJ/abstract/1367-2630/11/10/105019, new version submitted to correct Abstract in origina

    Calculation of energy levels and transition amplitudes for barium and radium

    Get PDF
    The radium atom is a promising system for studying parity and time invariance violating weak interactions. However, available experimental spectroscopic data for radium is insufficient for designing an optimal experimental setup. We calculate the energy levels and transition amplitudes for radium states of significant interest. Forty states corresponding to all possible configurations consisting of the 7s7s, 7p7p and 6d6d single-electron states as well as the states of the 7s8s7s8s, 7s8p7s8p and 7s7d7s7d configurations have been calculated. The energies of ten of these states corresponding to the 6d26d^2, 7s8s7s8s, 7p27p^2, and 6d7p6d7p configurations are not known from experiment. Calculations for barium are used to control the accuracy.Comment: 12 pages, 4 table

    Efficient Passive ICS Device Discovery and Identification by MAC Address Correlation

    Full text link
    Owing to a growing number of attacks, the assessment of Industrial Control Systems (ICSs) has gained in importance. An integral part of an assessment is the creation of a detailed inventory of all connected devices, enabling vulnerability evaluations. For this purpose, scans of networks are crucial. Active scanning, which generates irregular traffic, is a method to get an overview of connected and active devices. Since such additional traffic may lead to an unexpected behavior of devices, active scanning methods should be avoided in critical infrastructure networks. In such cases, passive network monitoring offers an alternative, which is often used in conjunction with complex deep-packet inspection techniques. There are very few publications on lightweight passive scanning methodologies for industrial networks. In this paper, we propose a lightweight passive network monitoring technique using an efficient Media Access Control (MAC) address-based identification of industrial devices. Based on an incomplete set of known MAC address to device associations, the presented method can guess correct device and vendor information. Proving the feasibility of the method, an implementation is also introduced and evaluated regarding its efficiency. The feasibility of predicting a specific device/vendor combination is demonstrated by having similar devices in the database. In our ICS testbed, we reached a host discovery rate of 100% at an identification rate of more than 66%, outperforming the results of existing tools.Comment: http://dx.doi.org/10.14236/ewic/ICS2018.

    Search for inelastic dark matter with the CDMS II experiment

    Full text link
    Results are presented from a reanalysis of the entire five-tower data set acquired with the Cryogenic Dark Matter Search (CDMS II) experiment at the Soudan Underground Laboratory, with an exposure of 969 kg-days. The analysis window was extended to a recoil energy of 150 keV, and an improved surface-event background-rejection cut was defined to increase the sensitivity of the experiment to the inelastic dark matter (iDM) model. Three dark matter candidates were found between 25 keV and 150 keV. The probability to observe three or more background events in this energy range is 11%. Because of the occurrence of these events, the constraints on the iDM parameter space are slightly less stringent than those from our previous analysis, which used an energy window of 10–100 keV. © 2011 American Physical Societ
    • …
    corecore