22 research outputs found

    Evolutionarily Conserved Herpesviral Protein Interaction Networks

    Get PDF
    Herpesviruses constitute a family of large DNA viruses widely spread in vertebrates and causing a variety of different diseases. They possess dsDNA genomes ranging from 120 to 240 kbp encoding between 70 to 170 open reading frames. We previously reported the protein interaction networks of two herpesviruses, varicella-zoster virus (VZV) and Kaposi's sarcoma-associated herpesvirus (KSHV). In this study, we systematically tested three additional herpesvirus species, herpes simplex virus 1 (HSV-1), murine cytomegalovirus and Epstein-Barr virus, for protein interactions in order to be able to perform a comparative analysis of all three herpesvirus subfamilies. We identified 735 interactions by genome-wide yeast-two-hybrid screens (Y2H), and, together with the interactomes of VZV and KSHV, included a total of 1,007 intraviral protein interactions in the analysis. Whereas a large number of interactions have not been reported previously, we were able to identify a core set of highly conserved protein interactions, like the interaction between HSV-1 UL33 with the nuclear egress proteins UL31/UL34. Interactions were conserved between orthologous proteins despite generally low sequence similarity, suggesting that function may be more conserved than sequence. By combining interactomes of different species we were able to systematically address the low coverage of the Y2H system and to extract biologically relevant interactions which were not evident from single species

    Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies.

    Get PDF
    CAPRISA, 2014.Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01-12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30-38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development

    History of Astroparticle Physics and its Components

    Full text link

    Non-compartmental estimation of pharmacokinetic parameters in serial sampling designs.

    No full text
    Pharmacokinetic studies are commonly analyzed using a two-stage approach where the first stage involves estimation of pharmacokinetic parameters for each subject separately and the second stage uses the individual parameter estimates for statistical inference. This two-stage approach is not applicable in sparse sampling situations where only one sample is available per subject. Nonlinear models are often applied to analyze pharmacokinetic data assessed in such serial sampling designs. Modelling approaches are suitable provided that the form of the true model is known, which is rarely the case in early stages of drug development. This paper presents an alternative approach to estimate pharmacokinetic parameters based on non-compartmental and asymptotic theory in the case of serial sampling when a drug is given as an intravenous bolus. The statistical properties of the estimators of the pharmacokinetic parameters are investigated and evaluated using Monte Carlo simulations

    Moléculas que marcam o tempo: implicações para os fenótipos circadianos Timekeeping molecules: implications for circadian phenotypes

    No full text
    OBJETIVO: Revisar resumidamente a literatura dos últimos 36 anos de pesquisa em cronobiologia molecular a fim de informar aos profissionais de saúde os avanços obtidos nesta área e os potenciais para aplicação na clínica médica. MÉTODO: Buscas na literatura foram realizadas utilizando as bases de dados PubMed e Scopus usando como palavras-chave "clock genes, circadian rhythms, diurnal preference, delayed sleep phase syndrome, advanced sleep phase syndrome, photoperiod and mood disorder". DISCUSSÃO: Atualmente, o mecanismo molecular da regulação da ritmicidade circadiana é compreendido em grande detalhe. Muitos estudos publicados mostram associações de polimorfismos nos genes relógio com transtornos do ritmo circadiano e com transtornos do humor. CONCLUSÕES: De maneira geral, o progresso obtido na área de cronobiologia molecular traz um melhor entendimento da regulação do sistema de temporização biológico. O desenvolvimento de estudos nesta área tem o potencial de ser aplicável ao tratamento dos transtornos dos ritmos circadianos e certos transtornos do humor, além de prevenir riscos à saúde causados por viagens intercontinentais (Jet Lag) e por trabalhos noturnos e por turnos.<br>OBJECTIVE: The aim of this study was to review the molecular chronobiology studies in the last 36 years in order Eto point out the advances in this area to health professionals. METHOD: We searched in the PubMed and Scopus data banks for articles related with human molecular chronobiology. The keywords used were "clock genes, circadian rhythms, diurnal preference, delayed sleep phase syndrome, advanced sleep phase syndrome, photoperiod and mood disorder". DISCUSSION: The knowledge about molecular mechanism of circadian rhythms increased a lot in the last years and now we are able to better understand the details of molecular processes involved in circadian and sleep regulation. Studies show that polymorphisms in clock genes are associated with sleep and mood disorders. These studies will be helpful to further elucidate the regulation of molecular mechanisms of circadian rhythms. CONCLUSIONS: The development of these studies in molecular chronobiology can be helpful to treat circadian and mood disorders and to prevent health risks caused by intercontinental flights (Jet Lag), nocturnal or shift work schedule

    Dysregulation of soluble epoxide hydrolase and lipidomic profiles in anorexia nervosa

    Get PDF
    Individuals with anorexia nervosa (AN) restrict eating and become emaciated. They tend to have an aversion to foods rich in fat. Because epoxide hydrolase 2 (EPHX2) was identified as a novel AN susceptibility gene, and because its protein product, soluble epoxide hydrolase (sEH), converts bioactive epoxides of polyunsaturated fatty acid (PUFA) to the corresponding diols, lipidomic and metabolomic targets of EPHX2 were assessed to evaluate the biological functions of EPHX2 and their role in AN. Epoxide substrates of sEH and associated oxylipins were measured in ill AN, recovered AN and gender- and race-matched controls. PUFA and oxylipin markers were tested as potential biomarkers for AN. Oxylipin ratios were calculated as proxy markers of in vivo sEH activity. Several free- and total PUFAs were associated with AN diagnosis and with AN recovery. AN displayed elevated n-3 PUFAs and may differ from controls in PUFA elongation and desaturation processes. Cytochrome P450 pathway oxylipins from arachidonic acid, linoleic acid, alpha-linolenic acid and docosahexaenoic acid PUFAs are associated with AN diagnosis. The diol: epoxide ratios suggest the sEH activity is higher in AN compared with controls. Multivariate analysis illustrates normalization of lipidomic profiles in recovered ANs. EPHX2 influences AN risk through in vivo interaction with dietary PUFAs. PUFA composition and concentrations as well as sEH activity may contribute to the pathogenesis and prognosis of AN. Our data support the involvement of EPHX2-associated lipidomic and oxylipin dysregulations in AN, and reveal their potential as biomarkers to assess responsiveness to future intervention or treatment
    corecore