307 research outputs found
Fe K\alpha emission from photoionized slabs: the impact of the iron abundance
Iron K\alpha emission from photoionized and optically thick material is
observed in a variety of astrophysical environments including X-ray binaries,
active galactic nuclei, and possibly gamma-ray bursts. This paper presents
calculations showing how the equivalent width (EW) of the Fe K line depends on
the iron abundance of the illuminated gas and its ionization state -- two
variables subject to significant cosmic scatter. Reflection spectra from a
constant density slab which is illuminated with a power-law spectrum with
photon-index \Gamma are computed using the code of Ross & Fabian. When the Fe K
EW is measured from the reflection spectra alone, we find that it can reach
values greater than 6 keV if the Fe abundance is about 10 times solar and the
illuminated gas is neutral. EWs of about 1 keV are obtained when the gas is
ionized. In contrast, when the EW is measured from the incident+reflected
spectrum, the largest EWs are ~800 keV and are found when the gas is ionized.
When \Gamma is increased, the Fe K line generally weakens, but significant
emission can persist to larger ionization parameters. The iron abundance has
its greatest impact on the EW when it is less than 5 times solar. When the
abundance is further increased, the line strengthens only marginally.
Therefore, we conclude that Fe K lines with EWs much greater than 800 eV are
unlikely to be produced by gas with a supersolar Fe abundance. These results
should be useful in interpreting Fe K emission whenever it arises from
optically thick fluorescence.Comment: 5 pages, 5 figures, accepted by MNRAS Letter
Langmuir-Blodgett films of polyethylene
The possibility to obtain surface layers on water and prepare solid multilayer Langmuir–Blodgett films of medium-density polyethylene is shown. The polymer film on water is stable, demonstrates a reversible surface pressure-area isotherm up to 15 mN/m, and can be deposited onto a substrate using the Langmuir–Blodgett technique in a wide range of surface pressures. The thickness of a single deposited layer is 5.1 nm on average. The dielectric and optical constants of multilayer films are near their bulk values. The films exhibit high dielectric strength of at least 200 MV/m
The XMM Cluster Survey: Active Galactic Nuclei and Starburst Galaxies in XMMXCS J2215.9-1738 at z=1.46
We use Chandra X-ray and Spitzer infrared observations to explore the AGN and
starburst populations of XMMXCS J2215.9-1738 at z=1.46, one of the most distant
spectroscopically confirmed galaxy clusters known. The high resolution X-ray
imaging reveals that the cluster emission is contaminated by point sources that
were not resolved in XMM observations of the system, and have the effect of
hardening the spectrum, leading to the previously reported temperature for this
system being overestimated. From a joint spectroscopic analysis of the Chandra
and XMM data, the cluster is found to have temperature T=4.1_-0.9^+0.6 keV and
luminosity L_X=(2.92_-0.35^+0.24)x10^44 erg/s extrapolated to a radius of 2
Mpc. As a result of this revised analysis, the cluster is found to lie on the
sigma_v-T relation, but the cluster remains less luminous than would be
expected from self-similar evolution of the local L_X-T relation. Two of the
newly discovered X-ray AGN are cluster members, while a third object, which is
also a prominent 24 micron source, is found to have properties consistent with
it being a high redshift, highly obscured object in the background. We find a
total of eight >5 sigma 24 micron sources associated with cluster members (four
spectroscopically confirmed, and four selected using photometric redshifts),
and one additional 24 micron source with two possible optical/near-IR
counterparts that may be associated with the cluster. Examining the IRAC colors
of these sources, we find one object is likely to be an AGN. Assuming that the
other 24 micron sources are powered by star formation, their infrared
luminosities imply star formation rates ~100 M_sun/yr. We find that three of
these sources are located at projected distances of <250 kpc from the cluster
center, suggesting that a large amount of star formation may be taking place in
the cluster core, in contrast to clusters at low redshift.Comment: Accepted for publication in ApJ, 16 pages, 10 figure
The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected via the Sunyaev-Zel'dovich Effect
We present constraints on cosmological parameters based on a sample of
Sunyaev-Zel'dovich-selected galaxy clusters detected in a millimeter-wave
survey by the Atacama Cosmology Telescope. The cluster sample used in this
analysis consists of 9 optically-confirmed high-mass clusters comprising the
high-significance end of the total cluster sample identified in 455 square
degrees of sky surveyed during 2008 at 148 GHz. We focus on the most massive
systems to reduce the degeneracy between unknown cluster astrophysics and
cosmology derived from SZ surveys. We describe the scaling relation between
cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the
values of the parameters in this fit with conservative priors gives sigma_8 =
0.851 +/- 0.115 and w = -1.14 +/- 0.35 for a spatially-flat wCDM cosmological
model with WMAP 7-year priors on cosmological parameters. This gives a modest
improvement in statistical uncertainty over WMAP 7-year constraints alone.
Fixing the scaling relation between cluster mass and SZ signal to a fiducial
relation obtained from numerical simulations and calibrated by X-ray
observations, we find sigma_8 = 0.821 +/- 0.044 and w = -1.05 +/- 0.20. These
results are consistent with constraints from WMAP 7 plus baryon acoustic
oscillations plus type Ia supernoava which give sigma_8 = 0.802 +/- 0.038 and w
= -0.98 +/- 0.053. A stacking analysis of the clusters in this sample compared
to clusters simulated assuming the fiducial model also shows good agreement.
These results suggest that, given the sample of clusters used here, both the
astrophysics of massive clusters and the cosmological parameters derived from
them are broadly consistent with current models.Comment: 12 pages, 7 figures. Submitted to Ap
Cross-National Differences in Victimization : Disentangling the Impact of Composition and Context
Varying rates of criminal victimization across countries are assumed to be the outcome of countrylevel structural constraints that determine the supply ofmotivated o¡enders, as well as the differential composition within countries of suitable targets and capable guardianship. However, previous empirical tests of these ‘compositional’ and ‘contextual’ explanations of cross-national di¡erences
have been performed upon macro-level crime data due to the unavailability of comparable individual-level data across countries. This limitation has had two important consequences for cross-national crime research. First, micro-/meso-level mechanisms underlying cross-national differences cannot be truly inferred from macro-level data. Secondly, the e¡ects of contextual measures (e.g. income inequality) on crime are uncontrolled for compositional heterogeneity. In this
paper, these limitations are overcome by analysing individual-level victimization data across 18 countries from the International CrimeVictims Survey. Results from multi-level analyses on theft and violent victimization indicate that the national level of income inequality is positively related to risk, independent of compositional (i.e. micro- and meso-level) di¡erences. Furthermore, crossnational variation in victimization rates is not only shaped by di¡erences in national context, but
also by varying composition. More speci¢cally, countries had higher crime rates the more they consisted of urban residents and regions with lowaverage social cohesion.
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
Waratah Seed-1: Australia\u27s First Commercial Ride Share Satellite
In this paper, we report on a 6U CubeSat named Waratah Seed-1, designed by the ARC Training Centre for CubeSats, UAVs, and their Applications (CUAVA) and partners under the Waratah Seed project. Waratah Seed is a pilot Space Qualification Mission initiated under the NSW Government\u27s Space Industry Development Strategy with partial funding from Investment NSW. The goal of the mission is to allow NSW and Australian space industry groups to test their technology in space by flying on a 6U ride-share CubeSat. This project is the first of its kind in Australia, allowing space-tech start-ups and other groups to access a satellite spaceflight to test payloads at an inexpensive rate and in a more accessible way. The mission will help overcome one of the key barriers to gaining space flight heritage and should help accelerate the development of the Australian space ecosystem. The design of the WS-1 Satellite bus is based on its predecessor, the 3U CUAVA-1 CubeSat, and its sister 6U spacecraft CUAVA-2. The main payloads are a GPS reflectometry payload from UNSW and partners and a thermal management payload from UTS in collaboration with Mawson Rovers and Spiral Blue. Furthermore, there will be one edge computing payload from Spiral Blue, two solar cell test payloads, one each by Euroka Power and Extraterrestrial Power, a material test payload by Dandelions, a tactile, force, and torque sensor test payload by Sperospace and Contactile, an electropermanent magnetotorquer from DenebSpace and a space debris and plasma environment instrument from CUAVA and the University of Sydney. The satellite is scheduled for launch in July 2024 via SpaceX\u27s Transporter 11
- …