199 research outputs found
Plasma signaling factors in patients with langerhans cell histiocytosis (LCH) correlate with relative frequencies of LCH cells and t cells within lesions
Langerhans cell histiocytosis (LCH) lesions contain an inflammatory infiltrate of immune cells including myeloid-derived LCH cells. Cell-signaling proteins within the lesion environment suggest that LCH cells and T cells contribute majorly to the inflammation. Foxp3+ regulatory T cells (Tregs) are enriched in lesions and blood from patients with LCH and are likely involved in LCH pathogenesis. In contrast, mucosal associated invariant T (MAIT) cells are reduced in blood from these patients and the consequence of this is unknown. Serum/plasma levels of cytokines have been associated with LCH disease extent and may play a role in the recruitment of cells to lesions. We investigated whether plasma signaling factors differed between patients with active and non-active LCH. Cell-signaling factors (38 analytes total) were measured in patient plasma and cell populations from matched lesions and/or peripheral blood were enumerated. This study aimed at understanding whether plasma factors corresponded with LCH cells and/or LCH-associated T cell subsets in patients with LCH. We identified several associations between plasma factors and lesional/circulating immune cell populations, thus highlighting new factors as potentially important in LCH pathogenesis. This study highlights plasma cell-signaling factors that are associated with LCH cells, MAIT cells or Tregs in patients, thus they are potentially important in LCH pathogenesis. Further study into these associations is needed to determine whether these factors may become suitable prognostic indicators or therapeutic targets to benefit patients. Copyright © 2022 Mitchell, Kvedaraite, von Bahr Greenwood, Lourda, Henter, Berzins and Kannourakis
Screening for neurodegeneration in Langerhans cell histiocytosis with neurofilament light in plasma
Patients with Langerhans cell histiocytosis (LCH) may develop progressive neurodegeneration in the central nervous system (ND-CNS-LCH). Neurofilament light protein (NFL) in cerebrospinal fluid (CSF) is a promising biomarker to detect and monitor ND-CNS-LCH. We compared paired samples of NFL in plasma (p-NFL) and CSF in 10 patients (19 samples). Nine samples had abnormal CSF-NFL (defined as ≥380 ng/l) with corresponding p-NFL ≥ 2 ng/l. Ten samples had CSF-NFL < 380 ng/l; eight (80%) with p-NFL < 2 ng/l (p < 0.001; Fisher's exact test). Thus, our results suggest that p-NFL may be used to screen for ND-CNS-LCH. Further studies are encouraged, including the role of p-NFL for monitoring of ND-CNS-LCH
The ribosome assembly factor Nep1 responsible for Bowen–Conradi syndrome is a pseudouridine-N1-specific methyltransferase
Nep1 (Emg1) is a highly conserved nucleolar protein with an essential function in ribosome biogenesis. A mutation in the human Nep1 homolog causes Bowen–Conradi syndrome—a severe developmental disorder. Structures of Nep1 revealed a dimer with a fold similar to the SPOUT-class of RNA-methyltransferases suggesting that Nep1 acts as a methyltransferase in ribosome biogenesis. The target for this putative methyltransferase activity has not been identified yet. We characterized the RNA-binding specificity of Methanocaldococcus jannaschii Nep1 by fluorescence- and NMR-spectroscopy as well as by yeast three-hybrid screening. Nep1 binds with high affinity to short RNA oligonucleotides corresponding to nt 910–921 of M. jannaschii 16S rRNA through a highly conserved basic surface cleft along the dimer interface. Nep1 only methylates RNAs containing a pseudouridine at a position corresponding to a previously identified hypermodified N1-methyl-N3-(3-amino-3-carboxypropyl) pseudouridine (m1acp3-Ψ) in eukaryotic 18S rRNAs. Analysis of the methylated nucleoside by MALDI-mass spectrometry, HPLC and NMR shows that the methyl group is transferred to the N1 of the pseudouridine. Thus, Nep1 is the first identified example of an N1-specific pseudouridine methyltransferase. This enzymatic activity is also conserved in human Nep1 suggesting that Nep1 is the methyltransferase in the biosynthesis of m1acp3-Ψ in eukaryotic 18S rRNAs
Divisors in a Dedekind domain
5 páginas.-- 1991 Mathematics Subject Classification: 11R04, 11A05.Peer reviewe
Collision Dynamics and Solvation of Water Molecules in a Liquid Methanol Film
Environmental molecular beam experiments are used to examine water
interactions with liquid methanol films at temperatures from 170 K to 190 K. We
find that water molecules with 0.32 eV incident kinetic energy are efficiently
trapped by the liquid methanol. The scattering process is characterized by an
efficient loss of energy to surface modes with a minor component of the
incident beam that is inelastically scattered. Thermal desorption of water
molecules has a well characterized Arrhenius form with an activation energy of
0.47{\pm}0.11 eV and pre-exponential factor of 4.6 {\times} 10^(15{\pm}3)
s^(-1). We also observe a temperature dependent incorporation of incident water
into the methanol layer. The implication for fundamental studies and
environmental applications is that even an alcohol as simple as methanol can
exhibit complex and temperature dependent surfactant behavior.Comment: 8 pages, 5 figure
- …