1,441 research outputs found
Acetylcysteine for prevention of contrast-induced nephropathy after intravascular angiography: A systematic review and meta-analysis
BACKGROUND: Contrast-induced nephropathy is an important cause of acute renal failure. We assess the efficacy of acetylcysteine for prevention of contrast-induced nephropathy among patients undergoing intravascular angiography. METHODS: We conducted a systematic review and meta-analysis of randomized controlled trials comparing prophylactic acetylcysteine plus hydration versus hydration alone in patients undergoing intravascular angiography. Studies were identified by searching MEDLINE, EMBASE, and CENTRAL databases. Our main outcome measures were the risk of contrast-induced nephropathy and the difference in serum creatinine between acetylcysteine and control groups at 48 h. RESULTS: Fourteen studies involving 1261 patients were identified and included for analysis, and findings were heterogeneous across studies. Acetylcysteine was associated with a significantly reduced incidence of contrast-induced nephropathy in five studies, and no difference in the other nine (with a trend toward a higher incidence in six of the latter studies). The pooled odds ratio for contrast-induced nephropathy with acetylcysteine relative to control was 0.54 (95% CI, 0.32–0.91, p = 0.02) and the pooled estimate of difference in 48-h serum creatinine for acetylcysteine relative to control was -7.2 μmol/L (95% CI -19.7 to 5.3, p = 0.26). These pooled values need to be interpreted cautiously because of the heterogeneity across studies, and due to evidence of publication bias. Meta-regression suggested that the heterogeneity might be partially explained by whether the angiography was performed electively or as emergency. CONCLUSION: These findings indicate that published studies of acetylcysteine for prevention of contrast-induced nephropathy yield inconsistent results. The efficacy of acetylcysteine will remain uncertain unless a large well-designed multi-center trial is performed
Processes controlling carbon cycling in Antarctic glacier surface ecosystems
Glacier surface ecosystems, including cryoconite holes and cryolakes, are significant contributors to regional carbon cycles. Incubation experiments to determine the net production (NEP) of organic matter in cryoconite typically have durations of 6-24 hours, and produce a wide range of results, many of which indicate that the system is net heterotrophic. We employ longer term incubations to examine the temporal variation of NEP in cryoconite from the McMurdo Dry Valleys, Antarctica to examine the effect of sediment disturbance on system production, and to understand processes controlling production over the lifetimes of glacier surface ecosystems. The shorter-term incubations have durations of one week and show net heterotrophy. The longer term incubations of approximately one year show net autotrophy, but only after a period of about 40 days (~1000 hours). The control on net organic carbon production is a combination of the rate of diffusion of dissolved inorganic carbon from heterotrophic activity within cryoconite into the water, the rate of carbonate dissolution, and the saturation of carbonate in the water (which is a result of photosynthesis in a closed system). We demonstrate that sediment on glacier surfaces has the potential to accumulate carbon over timescales of months to years
Economics of dialysis dependence following renal replacement therapy for critically ill acute kidney injury patients
Background The obective of this study was to perform a cost-effectiveness analysis comparing intermittent with continuous renal replacement therapy (IRRT versus CRRT) as initial therapy for acute kidney injury (AKI) in the intensive care unit (ICU). Methods Assuming some patients would potentially be eligible for either modality, we modeled life year gained, the quality-adjusted life years (QALYs) and healthcare costs for a cohort of 1000 IRRT patients and a cohort of 1000 CRRT patients. We used a 1-year, 5-year and a lifetime horizon. A Markov model with two health states for AKI survivors was designed: dialysis dependence and dialysis independence. We applied Weibull regression from published estimates to fit survival curves for CRRT and IRRT patients and to fit the proportion of dialysis dependence among CRRT and IRRT survivors. We then applied a risk ratio reported in a large retrospective cohort study to the fitted CRRT estimates in order to determine the proportion of dialysis dependence for IRRT survivors. We conducted sensitivity analyses based on a range of differences for daily implementation cost between CRRT and IRRT (base case: CRRT day 200 to 4046 for CRRT versus 37 780 for CRRT versus $39 448 for IRRT on average). The base case incremental cost-effectiveness analysis showed that CRRT dominated IRRT. This dominance was confirmed by extensive sensitivity analysis. Conclusions Initial CRRT is cost-effective compared with initial IRRT by reducing the rate of long-term dialysis dependence among critically ill AKI survivor
Cardiorenal syndrome type 3: pathophysiologic and epidemiologic considerations
Cardiorenal syndrome (CRS) type 3 is a subclassification of the CRS whereby an episode of acute kidney injury (AKI) precipitates and contributes to the development of acute cardiac injury. There is limited understanding of the pathophysiologic mechanisms of how AKI contributes to acute cardiac injury and/or dysfunction. An episode of AKI may have effects that depend on the severity and duration of AKI and that both directly and indirectly predispose to an acute cardiac event. Moreover, baseline susceptibility will modify the subsequent risk for cardiac events associated with AKI. Experimental data suggest cardiac injury may be directly induced by inflammatory mediators, oxidative stress, apoptosis and activation of neuroendocrine systems early after AKI. Likewise, AKI may be associated with physiologic derangements (i.e. volume overload; metabolic acidosis, retention of uremic toxins, hyperkalemia; hypocalcemia), alterations to coronary vasoreactivity, and ventricular remodeling and fibrosis that indirectly exert negative effects on cardiac function. AKI may also adversely impact cardiac function by contributing to alternations in drug pharmacokinetics and pharmacodynamics. Additional experimental and translational investigations coupled with epidemiologic surveys are needed to better explore that pathophysiologic mechanisms underpinning acute cardiac events associated with AKI and their impact on outcomes
Physiological capabilities of cryoconite hole microorganisms
Cryoconite holes are miniature freshwater aquatic ecosystems that harbor a relatively diverse microbial community. This microbial community can withstand the extreme conditions of the supraglacial environment, including fluctuating temperatures, extreme and varying geochemical conditions and limited nutrients. We analyzed the physiological capabilities of microbial isolates from cryoconite holes from Antarctica, Greenland, and Svalbard in selected environmental conditions: extreme pH, salinity, freeze-thaw and limited carbon sources, to identify their physiological limits. The results suggest that heterotrophic microorganisms in cryoconite holes are well adapted to fast-changing environmental conditions, by surviving multiple freeze-thaw cycles, a wide range of salinity and pH conditions and scavenging a variety of organic substrates. Under oxic and anoxic conditions, the communities grew well in temperatures up to 30°C, although in anoxic conditions the community was more successful at colder temperatures (0.2°C). The most abundant cultivable microorganisms were facultative anaerobic bacteria and yeasts. They grew in salinities up to 10% and in pH ranging from 4 to 10.5 (Antarctica), 2.5 to 10 (Svalbard), and 3 to 10 (Greenland). Their growth was sustained on at least 58 single carbon sources and there was no decrease in viability for some isolates after up to 100 consecutive freeze-thaw cycles. The elevated viability of the anaerobic community in the lowest temperatures indicates they might be key players in winter conditions or in early melt seasons, when the oxygen is potentially depleted due to limited flow of meltwater. Consequently, facultative anaerobic heterotrophs are likely important players in the reactivation of the community after the polar night. This detailed physiological investigation shows that despite inhabiting a freshwater environment, cryoconite microorganisms are able to withstand conditions not typically encountered in freshwater environments (namely high salinities or extreme pH), making them physiologically more similar to arid soil communities. The results also point to a possible resilience of the most abundant microorganisms of cryoconite holes in the face of rapid change regardless of the location
Prolonged refractory status epilepticus following acute traumatic brain injury: a case report of excellent neurological recovery
INTRODUCTION: Refractory status epilepticus (RSE) secondary to traumatic brain injury (TBI) may be under-recognized and is associated with significant morbidity and mortality. METHODS: This case report describes a 20 year old previously healthy woman who suffered a severe TBI as a result of a motor vehicle collision and subsequently developed RSE. Pharmacological coma, physiological support and continuous electroencephalography (cEEG) were undertaken. RESULTS: Following 25 days of pharmacological coma, electrographic and clinical seizures subsided and the patient has made an excellent cognitive recovery. CONCLUSION: With early identification, aggressive physiological support, appropriate monitoring, including cEEG, and an adequate length of treatment, young trauma patients with no previous seizure history and limited structural damage to the brain can have excellent neurological recovery from prolonged RSE
Bioabsorbable metal zinc differentially affects mitochondria in vascular endothelial and smooth muscle cells
Zinc is an essential trace element having various structural, catalytic and regulatory interactions with an estimated 3000 proteins. Zinc has drawn recent attention for its use, both as pure metal and alloyed, in arterial stents due to its biodegradability, biocompatibility, and low corrosion rates. Previous studies have demonstrated that zinc metal implants prevent the development of neointimal hyperplasia, which is a common cause of restenosis following coronary intervention. This suppression appears to be smooth muscle cell-specific, as reendothelization of the neointima is not inhibited. To better understand the basis of zinc\u27s differential effects on rat aortic smooth muscle (RASMC) versus endothelial (RAENDO) cells, we conducted a transcriptomic analysis of both cell types following one-week continuous treatment with 5 µM or 50 µM zinc. This analysis indicated that genes whose protein products regulate mitochondrial functions, including oxidative phosphorylation and fusion/fission, are differentially affected by zinc in the two cell types. To better understand this, we performed Seahorse metabolic flux assays and quantitative imaging of mitochondrial networks in both cell types. Zinc treatment differently affected energy metabolism and mitochondrial structure/function in the two cell types. For example, both basal and maximal oxygen consumption rates were increased by zinc in RASMC but not in RAENDO. Zinc treatment increased apparent mitochondrial fusion in RASMC cells but increased mitochondrial fission in RAENDO cells. These results provide some insight into the mechanisms by which zinc treatment differently affects the two cell types and this information is important for understanding the role of zinc treatment in vascular cells and improving its use in biodegradable metal implants
- …