757 research outputs found
Benzo[b]tiophen-3-ol derivatives as effective inhibitors of human monoamine oxidase: design, synthesis, and biological activity
A series of benzo[b]thiophen-3-ols were synthesised and investigated as potential human monoamine oxidase (hMAO) inhibitors in vitro as well as ex vivo in rat cortex synaptosomes by means of evaluation of 3,4-dihydroxyphenylacetic acid/dopamine (DOPAC/DA) ratio and lactate dehydrogenase (LDH) activity. Most of these compounds possessed high selectivity for the MAO-B isoform and a discrete antioxidant and chelating potential. Molecular docking studies of all the compounds underscored potential binding site interactions suitable for MAO inhibition activity, and suggested structural requirements to further improve the activity of this scaffold by chemical modification of the aryl substituents. Starting from this heterocyclic nucleus, novel lead compounds for the treatment of neurodegenerative disease could be developed
4-(3-Nitrophenyl)thiazol-2-ylhydrazone derivatives as antioxidants and selective hMAO-B inhibitors: synthesis, biological activity and computational analysis
A new series of 4-(3-nitrophenyl)thiazol-2-ylhydrazone derivatives were designed, synthesised, and evaluated to assess their inhibitory effect on the human monoamine oxidase (hMAO) A and B isoforms. Different (un)substituted (hetero)aromatic substituents were linked to N1 of the hydrazone in order to establish robust structure–activity relationships. The results of the biological testing demonstrated that the presence of the hydrazothiazole nucleus bearing at C4 a phenyl ring functionalised at the meta position with a nitro group represents an important pharmacophoric feature to obtain selective and reversible human MAO-B inhibition for the treatment of neurodegenerative disorders. In addition, the most potent and selective MAO-B inhibitors were evaluated in silico as potential cholinesterase (AChE/BuChE) inhibitors and in vitro for antioxidant activities. The results obtained from molecular modelling studies provided insight into the multiple interactions and structural requirements for the reported MAO inhibitory properties
New strategies for neuroprotection in glaucoma,a disease that affects the central nervous system
Glaucoma is a disease where retinal ganglion cells (RGC) are specifically affected though a number of evidences endorse the hypothesis that glaucoma is a neuro-degenerative disorder of the central nervous system and suggest a possible connection between glaucomatous damage and cerebrovascular alterations. The mechanisms underlying RGC loss are not yet fully known but alterations of the autophagy machinery have been recently proposed as a potential contributing factor as for Alzheimer's disease. Here we review the current literature on new strategies for neuroprotection in glaucoma, focusing on pharmacologic strategies to minimize RGC damage
Excitotoxic mechanisms of apoptosis in the mammalian visual system following monocular visual deprivation
n/
Regulating levels of the neuromodulator D-serine in human brain: structural insight into pLG72 and D-amino acid oxidase interaction
The human flavoenzyme D-amino acid oxidase (hDAAO) degrades the NMDA-receptor modulator D-serine in the brain. Whereas hDAAO has been extensively characterized, little is known about its main modulator pLG72, a small protein encoded by the primate-specific gene G72 that has been associated with schizophrenia susceptibility. pLG72 interacts with neosynthesized hDAAO, promoting its inactivation and degradation. In this work we used low-resolution techniques to characterize the surface topology of the hDAAO-pLG72 complex. By using limited proteolysis coupled to mass spectrometry we could map the exposed regions in the two proteins after complex formation and highlighted an increased sensitivity to proteolysis of hDAAO in complex with pLG72. Cross-linking experiments by using bis(sulfosuccinimidyl)suberate identified the single covalent bond between T182 in hDAAO and K62 in pLG72. In order to validate the designed mode of interaction, three pLG72 variants incrementally truncated at the C-terminus, in addition to a form lacking the 71 N-terminal residues, were produced. All variants were dimeric, folded, and interacted with hDAAO. The strongest decrease in affinity for hDAAO (as well as for the hydrophobic drug chlorpromazine) was apparent for the N-terminally deleted pLG7272-153 form, which lacked K62. On the other hand, eliminating the disordered C-terminal tail yielded a more stable pLG72 protein, improved the binding to hDAAO, although giving lower enzyme inhibition. Elucidation of the mode of hDAAO-pLG72 interaction now makes it possible to design novel molecules that, by targeting the protein complex, can be therapeutically advantageous for diseases related to impairment in D-serine metabolism. This article is protected by copyright. All rights reserved
Corticostriatal Plastic Changes in Experimental L-DOPA-Induced Dyskinesia
In Parkinson's disease (PD), alteration of dopamine- (DA-) dependent striatal functions and pulsatile stimulation of DA receptors caused by the discontinuous administration of levodopa (L-DOPA) lead to a complex cascade of events affecting the postsynaptic striatal neurons that might account for the appearance of L-DOPA-induced dyskinesia (LID). Experimental models of LID have been widely used and extensively characterized in rodents and electrophysiological studies provided remarkable insights into the inner mechanisms underlying L-DOPA-induced corticostriatal plastic changes. Here we provide an overview of recent findings that represent a further step into the comprehension of mechanisms underlying maladaptive changes of basal ganglia functions in response to L-DOPA and associated to development of LID
CB1R, CB2R and TRPV1 expression and modulation in in vivo, animal glaucoma models: A systematic review
Background: The endocannabinoid system (ECS) is a complex biological regulatory system. Its expression and functionality have been widely investigated in ocular tissues. Recent data have reported its modulation to be valid in determining an ocular hypotensive and a neuroprotective effect in preclinical animal models of glaucoma. Aim: This study aimed to explore the available literature on cannabinoid receptor 1 (CB1R), cannabinoid receptor 2 (CB2R), and transient receptor potential vanilloid 1 (TRPV1) expression in the trabecular meshwork (TM), ciliary body (CB), and retina as well as their ocular hypotensive and neuroprotective effects in preclinical, in vivo, animal glaucoma models. Materials and methods: The study adhered to both PRISMA and SYRCLE guidelines. Sixty-nine full-length articles were included in the final analysis. Results: Preclinical studies indicated a widespread distribution of CB1R, CB2R, and TRPV1 in the TM, CB, and retina, although receptor-, age-, and species-dependent differences were observed. CB1R and CB2R modulation have been shown to exert ocular hypotensive effects in preclinical models via the regulation of inflow and outflow pathways. Retinal cell neuroprotection has been achieved in several experimental models, mediated by agonists and antagonists of CB1R, CB2R, and TRPV1. Discussion: Despite the growing body of preclinical data regarding the expression and modulation of ECS in ocular tissues, the mechanisms responsible for the hypotensive and neuroprotective efficacy exerted by this system remain largely elusive. Research on this topic is advocated to further substantiate the hypothesis that the ECS is a new potential therapeutic target in the context of glaucoma
Presynaptic control of corticostriatal synapses by endogenous GABA
Corticostriatal terminals have presynaptic GABAB receptors that limit glutamate release, but how these receptors are activated by endogenous GABA released by different types of striatal neurons is still unknown. To address this issue, we used single and paired whole-cell recordings combined with stimulation of corticostriatal fibers in rats and mice. In the presence of opioid, GABAA, and NK1 receptor antagonists, antidromic stimulation of a population of striatal projection neurons caused suppression of subsequently evoked EPSPs in projection neurons. These effects were larger at intervals of 500 ms than 1 or 2 s, and were fully blocked by the selective GABAB receptor antagonist CGP 52432. Bursts of spikes in individual projection neurons were not able to inhibit evoked EPSPs. Similarly, spikes in fast spiking interneurons and low-threshold spike interneurons failed to elicit detectable effects mediated by GABAB receptors. Conversely, spikes in individual neurogliaform interneurons suppressed evoked EPSPs, and these effects were blocked by CGP 52432. These results provide the first demonstration of how GABAB receptors are activated by endogenous GABA released by striatal neuronal types
Opioids in post-stroke pain: a systematic review and meta-analysis
Background: Post-stroke pain is one of the most common sequelae of stroke, which stands among the leading causes of death and adult-acquired disability worldwide. The role and clinical efficacy of opioids in post-stroke pain syndromes is still debated. Objectives: Due to the important gap in knowledge on the management of post-stroke pain, this systematic review aimed at assessing the efficacy of opioids in post-stroke pain syndromes. Methods: A literature search was conducted on databases relevant for medical scientific literature, i.e. PubMed/MEDLINE, Scopus, Web of Science and Cochrane Library databases from databases inception until August 31st, 2020 for clinical trials assessing the effects of opioids and opioid antagonists on pain reduction and pain related symptoms in patients with post-stroke pain syndromes. Studies assessing the effects of other medications (e.g., tricyclic antidepressant, pregabalin) or non - pharmacological management strategies (e.g., neurostimulation techniques) were excluded. The selected studies have been subjected to examination of the risk of bias. Results: The literature search retrieved 83,435 results. After duplicates removal, 34,285 articles were title and abstract screened. 25 full texts were assessed and 8 articles were identified to be eligible for inclusion in the qualitative summary and narrative analysis, of which three were placebo-controlled and two were dose-response. Among placebo-controlled studies, two evaluated the analgesic effect of morphine and one assessed the effects of the opioid antagonist naloxone on patients with central post-stroke pain. With regard to dose-response studies, both were on patients with central post-stroke pain, one assessing the efficacy of levorphanol, and the other on naloxone. Seven out of eight included studies showed an overall slight analgesic effect of opioids, with less consistent effects on other pain-related symptoms (e.g., mood, quality of life). The randomized controlled trials were subjected to meta-analysis and rating of the quality of evidence for the two outcomes considered according to GRADE (Grading of Recommendations, Assessment, Development and Evaluations) system. The overall results are inconclusive because of the small number of studies and of patients. Conclusions: The limited number of the included studies and their heterogeneity in terms of study design do not support the efficacy of opioids in post-stroke pain and in pain-related outcomes. Large double-blind randomized clinical trials with objective assessment of pain and related symptoms are needed to further investigate this topic
- …
