3 research outputs found
Recommendations and guidelines from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 1 -- In vivo small-animal imaging
The value of in vivo preclinical diffusion MRI (dMRI) is substantial.
Small-animal dMRI has been used for methodological development and validation,
characterizing the biological basis of diffusion phenomena, and comparative
anatomy. Many of the influential works in this field were first performed in
small animals or ex vivo samples. The steps from animal setup and monitoring,
to acquisition, analysis, and interpretation are complex, with many decisions
that may ultimately affect what questions can be answered using the data. This
work aims to serve as a reference, presenting selected recommendations and
guidelines from the diffusion community, on best practices for preclinical dMRI
of in vivo animals. In each section, we also highlight areas for which no
guidelines exist (and why), and where future work should focus. We first
describe the value that small animal imaging adds to the field of dMRI,
followed by general considerations and foundational knowledge that must be
considered when designing experiments. We briefly describe differences in
animal species and disease models and discuss how they are appropriate for
different studies. We then give guidelines for in vivo acquisition protocols,
including decisions on hardware, animal preparation, imaging sequences and data
processing, including pre-processing, model-fitting, and tractography. Finally,
we provide an online resource which lists publicly available preclinical dMRI
datasets and software packages, to promote responsible and reproducible
research. An overarching goal herein is to enhance the rigor and
reproducibility of small animal dMRI acquisitions and analyses, and thereby
advance biomedical knowledge.Comment: 69 pages, 6 figures, 1 tabl
Effects of labeling human mesenchymal stem cells with superparamagnetic iron oxides on cellular functions and magnetic resonance contrast in hypoxic environments and long-term monitoring
Ischemia, which involves decreased blood flow to a region and a corresponding deprivation of oxygen and nutrients, can be induced as a consequence of stroke or heart attack. A prevalent disease that affects many individuals worldwide, ischemic stroke results in functional and cognitive impairments, as neural cells in the brain receive inadequate nourishment and encounter inflammation and various other detrimental toxic factors that lead to their death. Given the scarce treatments for this disease in the clinic such as the administration of tissue plasminogen activator, which is only effective in a limited time window after the occurrence of stroke, it will be necessary to develop new strategies to ameliorate or prevent stroke-induced brain damage. Cell-based therapies appear to be a promising solution for treating ischemic stroke and many other ischemia-associated and neurodegenerative maladies. Particularly, human mesenchymal stem cells (hMSCs) are of interest for cell transplantation in stroke, given their multipotency, accessibility, and reparative abilities. To determine the fate and survival of hMSC, which will be imperative for successful transplantation therapies, these cells may be monitored using magnetic resonance imaging and transfected with superparamagnetic iron oxide (SPIO), a contrast agent that facilitates the detection of these hMSCs. This review encompasses pertinent research and findings to reveal the effects of SPIO on hMSC functions in the context of transplantation in ischemic environments and over extended time periods. This paper is a review article. Referred literature in this paper has been listed in the references section. The data sets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors' experiences