12,460 research outputs found
Supersymmetry Reach of Tevatron Upgrades: The Large Case
The Yukawa couplings of the tau lepton and the bottom quark become comparable
to, or even exceed, electroweak gauge couplings for large values of the SUSY
parameter . As a result, the lightest tau slepton \ttau_1 and
bottom squark \tb_1 can be significantly lighter than corresponding sleptons
and squarks of the first two generations. Gluino, chargino and neutralino
decays to third generation particles are significantly enhanced when
is large. This affects projections for collider experiment reach
for supersymmetric particles. In this paper, we evaluate the reach of the
Fermilab Tevatron collider for supersymmetric signals in the
framework of the mSUGRA model. We find that the reach via signatures with
multiple isolated leptons ( and ) is considerably reduced. For very
large , the greatest reach is attained in the multi-jet+\eslt
signature. Some significant extra regions may be probed by requiring the
presence of an identified -jet in jets+\eslt events, or by requiring one
of the identified leptons in clean trilepton events to actually be a hadronic 1
or 3 charged prong tau. In an appendix, we present formulae for chargino,
neutralino and gluino three body decays which are valid at large .Comment: 31 page Revtex file including 10 PS figure
Reach of the Fermilab Tevatron for minimal supergravity in the region of large scalar masses
The reach of the Fermilab Tevatron for supersymmetric matter has been
calculated in the framework of the minimal supergravity model in the clean
trilepton channel. Previous analyses of this channel were restricted to scalar
masses m_0<= 1 TeV. We extend the analysis to large values of scalar masses
m_0\sim 3.5 TeV. This includes the compelling hyperbolic branch/focus point
(HB/FP) region, where the superpotential \mu parameter becomes small. In this
region, assuming a 5\sigma (3\sigma) signal with 10 (25) fb^{-1} of integrated
luminosity, the Tevatron reach in the trilepton channel extends up to
m_{1/2}\sim 190 (270) GeV independent of \tan\beta . This corresponds to a
reach in terms of the gluino mass of m_{\tg}\sim 575 (750) GeV.Comment: 11 page latex file including 6 EPS figures; several typos corrected
and references adde
Mixed Higgsino Dark Matter from a Large SU(2) Gaugino Mass
We observe that in SUSY models with non-universal GUT scale gaugino mass
parameters, raising the GUT scale SU(2) gaugino mass |M_2| from its unified
value results in a smaller value of -m_{H_u}^2 at the weak scale. By the
electroweak symmetry breaking conditions, this implies a reduced value of \mu^2
{\it vis \`a vis} models with gaugino mass unification. The lightest neutralino
can then be mixed Higgsino dark matter with a relic density in agreement with
the measured abundance of cold dark matter (DM). We explore the phenomenology
of this high |M_2| DM model. The spectrum is characterized by a very large wino
mass and a concomitantly large splitting between left- and right- sfermion
masses. In addition, the lighter chargino and three light neutralinos are
relatively light with substantial higgsino components. The higgsino content of
the LSP implies large rates for direct detection of neutralino dark matter, and
enhanced rates for its indirect detection relative to mSUGRA. We find that
experiments at the LHC should be able to discover SUSY over the portion of
parameter space where m_{\tg} \alt 2350-2750 ~GeV, depending on the squark
mass, while a 1 TeV electron-positron collider has a reach comparable to that
of the LHC. The dilepton mass spectrum in multi-jet + \ell^+\ell^- + \eslt
events at the LHC will likely show more than one mass edge, while its shape
should provide indirect evidence for the large higgsino content of the decaying
neutralinos.Comment: 36 pages with 26 eps figure
Collider and Dark Matter Searches in Models with Mixed Modulus-Anomaly Mediated SUSY Breaking
We investigate the phenomenology of supersymmetric models where moduli fields
and the Weyl anomaly make comparable contributions to SUSY breaking effects in
the observable sector of fields. This mixed modulus-anomaly mediated
supersymmetry breaking (MM-AMSB) scenario is inspired by models of string
compactification with fluxes, which have been shown to yield a de Sitter vacuum
(as in the recent construction by Kachru {\it et al}). The phenomenology
depends on the so-called modular weights which, in turn, depend on the location
of various fields in the extra dimensions. We find that the model with zero
modular weights gives mass spectra characterized by very light top squarks
and/or tau sleptons, or where M_1\sim -M_2 so that the bino and wino are
approximately degenerate. The top squark mass can be in the range required by
successful electroweak baryogenesis. The measured relic density of cold dark
matter can be obtained via top squark co-annihilation at low \tan\beta, tau
slepton co-annihilation at large \tan\beta or via bino-wino coannihilation.
Then, we typically find low rates for direct and indirect detection of
neutralino dark matter. However, essentially all the WMAP-allowed parameter
space can be probed by experiments at the CERN LHC, while significant portions
may also be explored at an e^+e^- collider with \sqrt{s}=0.5--1 TeV. We also
investigate a case with non-zero modular weights. In this case,
co-annihilation, A-funnel annihilation and bulk annihilation of neutralinos are
all allowed. Results for future colliders are qualitatively similar, but
prospects for indirect dark matter searches via gamma rays and anti-particles
are somewhat better.Comment: 38 pages including 22 EPS figures; latest version posted to conform
with published versio
Probing Minimal Supergravity at the CERN LHC for Large
For large values of the minimal supergravity model parameter , the
tau lepton and the bottom quark Yukawa couplings become large, leading to
reduced masses of -sleptons and -squarks relative to their first and
second generation counterparts, and to enhanced decays of charginos and
neutralinos to -leptons and -quarks. We evaluate the reach of the CERN
LHC collider for supersymmetry in the mSUGRA model parameter space. We
find that values of GeV can be probed with just 10
fb of integrated luminosity for values as high as 45, so
that mSUGRA cannot escape the scrutiny of LHC experiments by virtue of having a
large value of . We also perform a case study of an mSUGRA model at
where \tz_2\to \tau\ttau_1 and \tw_1\to \ttau_1\nu_\tau
with branching fraction. In this case, at least within our
simplistic study, we show that a di-tau mass edge, which determines the value
of m_{\tz_2}-m_{\tz_1}, can still be reconstructed. This information can be
used as a starting point for reconstructing SUSY cascade decays on an
event-by-event basis, and can provide a strong constraint in determining the
underlying model parameters. Finally, we show that for large there
can be an observable excess of leptons, and argue that signals
might serve to provide new information about the underlying model framework.Comment: 22 page REVTEX file including 8 figure
Mixed axion/neutralino cold dark matter in supersymmetric models
We consider supersymmetric (SUSY) models wherein the strong CP problem is
solved by the Peccei-Quinn (PQ) mechanism with a concommitant axion/axino
supermultiplet. We examine R-parity conserving models where the neutralino is
the lightest SUSY particle, so that a mixture of neutralinos and axions serve
as cold dark matter. The mixed axion/neutralino CDM scenario can match the
measured dark matter abundance for SUSY models which typically give too low a
value of the usual thermal neutralino abundance, such as models with wino-like
or higgsino-like dark matter. The usual thermal neutralino abundance can be
greatly enhanced by the decay of thermally-produced axinos to neutralinos,
followed by neutralino re-annihilation at temperatures much lower than
freeze-out. In this case, the relic density is usually neutralino dominated,
and goes as \sim (f_a/N)/m_{axino}^{3/2}. If axino decay occurs before
neutralino freeze-out, then instead the neutralino abundance can be augmented
by relic axions to match the measured abundance. Entropy production from
late-time axino decays can diminish the axion abundance, but ultimately not the
neutralino abundance. In mixed axion/neutralino CDM models, it may be possible
to detect both a WIMP and an axion as dark matter relics. We also discuss
possible modifications of our results due to production and decay of saxions.
In the appendices, we present expressions for the Hubble expansion rate and the
axion and neutralino relic densities in radiation, matter and decaying-particle
dominated universes.Comment: 31 pages including 21 figure
Probing Neutralino Resonance Annihilation via Indirect Detection of Dark Matter
The lightest neutralino of R-parity conserving supersymmetric models serves
as a compelling candidate to account for the presence of cold dark matter in
the universe. In the minimal supergravity (mSUGRA) model, a relic density can
be found in accord with recent WMAP data for large values of the parameter
, where neutralino annihilation in the early universe occurs via the
broad s-channel resonance of the pseudoscalar Higgs boson . We map out rates
for indirect detection of neutralinos via 1. detection of neutrinos arising
from neutralino annihilation in the core of the earth or sun and 2. detection
of gamma rays, antiprotons and positrons arising from neutralino annihilation
in the galactic halo. If indeed -resonance annihilation is the main sink for
neutralinos in the early universe, then signals may occur in the gamma ray,
antiproton and positron channels, while a signal in the neutrino channel would
likely be absent. This is in contrast to the hyperbolic branch/focus point
(HB/FP) region where {\it all} indirect detection signals are likely to occur,
and also in contrast to the stau co-annihilation region, where {\it none} of
the indirect signals are likely to occur.Comment: 12 pages including 4 eps figure
Implications of Compressed Supersymmetry for Collider and Dark Matter Searches
Martin has proposed a scenario dubbed ``compressed supersymmetry'' (SUSY)
where the MSSM is the effective field theory between energy scales M_{\rm weak}
and M_{\rm GUT}, but with the GUT scale SU(3) gaugino mass M_3<< M_1 or M_2. As
a result, squark and gluino masses are suppressed relative to slepton, chargino
and neutralino masses, leading to a compressed sparticle mass spectrum, and
where the dark matter relic density in the early universe may be dominantly
governed by neutralino annihilation into ttbar pairs via exchange of a light
top squark. We explore the dark matter and collider signals expected from
compressed SUSY for two distinct model lines with differing assumptions about
GUT scale gaugino mass parameters. For dark matter signals, the compressed
squark spectrum leads to an enhancement in direct detection rates compared to
models with unified gaugino masses. Meanwhile, neutralino halo annihilation
rates to gamma rays and anti-matter are also enhanced relative to related
scenarios with unified gaugino masses but, depending on the halo dark matter
distribution, may yet be below the sensitivity of indirect searches underway.
In the case of collider signals, we compare the rates for the potentially
dominant decay modes of the stop_1 which may be expected to be produced in
cascade decay chains at the LHC: \tst_1\to c\tz_1 and \tst_1\to bW\tz_1. We
examine the extent to which multilepton signal rates are reduced when the
two-body decay mode dominates. For the model lines that we examine here, the
multi-lepton signals, though reduced, still remain observable at the LHC.Comment: 22 pages including 24 eps figure
Linear Collider Capabilities for Supersymmetry in Dark Matter Allowed Regions of the mSUGRA Model
Recent comparisons of minimal supergravity (mSUGRA) model predictions with
WMAP measurements of the neutralino relic density point to preferred regions of
model parameter space. We investigate the reach of linear colliders (LC) with
and 1 TeV for SUSY in the framework of the mSUGRA model. We find
that LCs can cover the entire stau co-annihilation region provided \tan\beta
\alt 30. In the hyperbolic branch/focus point (HB/FP) region of parameter
space, specialized cuts are suggested to increase the reach in this important
``dark matter allowed'' area. In the case of the HB/FP region, the reach of a
LC extends well past the reach of the CERN LHC. We examine a case study in the
HB/FP region, and show that the MSSM parameters and can be
sufficiently well-measured to demonstrate that one would indeed be in the HB/FP
region, where the lightest chargino and neutralino have a substantial higgsino
component.Comment: 29 pages, 15 EPS figures; updated version slightly modified to
conform with published versio
- …