51 research outputs found

    Xarxa Epidemilològica d'Investigació sobre Malalties Rares (REpIER)

    Get PDF
    Investigació epidemiològica; Malalties orfes; InvestigadorsEpidemiological research; Orphan diseases; ResearchersInvestigación epidemiológica; Enfermedades huérfanas; InvestigadoresEl projecte Xarxa Epidemiològica d’Investigació sobre Malalties Rares (REpIER) pretén desenvolupar un programa d’investigació epidemiològica per a les malalties rares a Espanya, que aporti un millor coneixement de la situació de les malalties rares, en els seus aspectes clínics, epidemiològics i terapèutics, i que a la vegada proporcioni una orientació més adient per al desenvolupament de protocols d’actuació sociosanitaris.The Epidemiological Network on Rare Diseases Research aims to develop a program of epidemiological research for rare diseases in Spain, which should provide a better understanding of the situation of rare diseases in their clinical, epidemiological and therapeutic and at the same time should provide a more suitable orientation for the development of social health protocols.El proyecto Red Epidemiológica de Investigación sobre Enfermedades Raras (REpIER) pretende desarrollar un programa de investigación epidemiológica para las enfermedades raras en España, que aporte un mejor conocimiento de la situación de las enfermedades raras, en sus aspectos clínicos, epidemiológicos y terapéuticos , y que a la vez proporcione una orientación más adecuada para el desarrollo de protocolos de actuación sociosanitarios

    Novel 14q32.2 paternal deletion encompassing the whole DLK1 gene associated with Temple syndrome

    Get PDF
    Background Temple syndrome (TS14) is a rare imprinting disorder caused by maternal UPD14, imprinting defects or paternal microdeletions which lead to an increase in the maternal expressed genes and a silencing the paternally expressed genes in the 14q32 imprinted domain. Classical TS14 phenotypic features include pre- and postnatal short stature, small hands and feet, muscular hypotonia, motor delay, feeding difficulties, weight gain, premature puberty along and precocious puberty. Methods An exon array comparative genomic hybridization was performed on a patient affected by psychomotor and language delay, muscular hypotonia, relative macrocephaly, and small hand and feet at two years old. At 6 years of age, the proband presented with precocious thelarche. Genes dosage and methylation within the 14q32 region were analyzed by MS-MLPA. Bisulfite PCR and pyrosequencing were employed to quantification methylation at the four known imprinted differentially methylated regions (DMR) within the 14q32 domain: DLK1 DMR, IG-DMR, MEG3 DMR and MEG8 DMR. Results The patient had inherited a 69 Kb deletion, encompassing the entire DLK1 gene, on the paternal allele. Relative hypermethylation of the two maternally methylated intervals, DLK1 and MEG8 DMRs, was observed along with normal methylation level at IG-DMR and MEG3 DMR, resulting in a phenotype consistent with TS14. Additional family members with the deletion showed modest methylation changes at both the DLK1 and MEG8 DMRs consistent with parental transmission. Conclusion We describe a girl with clinical presentation suggestive of Temple syndrome resulting from a small paternal 14q32 deletion that led to DLK1 whole-gene deletion, as well as hypermethylation of the maternally methylated DLK1-DMR

    High Incidence of Copy Number Variants in Adults with Intellectual Disability and Co-morbid Psychiatric Disorders

    Get PDF
    Altres ajuts: Financial support was received from "Fundació Parc Taulí Institut d'Investigació i Innovació Parc Taulí I3PT" (Grant Nos. CIR2009/33, CIR2010/034) and "Fundació Barnola-Vallribera 2011".A genetic analysis of unexplained mild-moderate intellectual disability and co-morbid psychiatric or behavioural disorders is not systematically conducted in adults. A cohort of 100 adult patients affected by both phenotypes were analysed in order to identify the presence of copy number variants (CNVs) responsible for their condition identifying a yield of 12.8% of pathogenic CNVs (19% when including clinically recognizable microdeletion syndromes). Moreover, there is a detailed clinical description of an additional 11% of the patients harbouring possible pathogenic CNVs-including a 7q31 deletion (IMMP2L) in two unrelated patients and duplications in 3q29, 9p24.2p24.1 and 15q14q15.1-providing new evidence of its contribution to the phenotype. This study adds further proof of including chromosomal microarray analysis (CMA) as a mandatory test to improve the diagnosis in the adult patients in psychiatric services

    Novel intragenic deletions within the UBE3A gene in two unrelated patients with Angelman syndrome : case report and review of the literature

    Get PDF
    Altres ajuts: The financial support for carrying out this work was received from Fundació Parc Taulí- Institut d'Investigació i Innovació Parc Taulí I3PT (CIR2015/040), Asociación Española de Síndrome de Angelman [...].Patients with Angelman syndrome (AS) are affected by severe intellectual disability with absence of speech, distinctive dysmorphic craniofacial features, ataxia and a characteristic behavioral phenotype. AS is caused by the lack of expression in neurons of the UBE3A gene, which is located in the 15q11.2-q13 imprinted region. Functional loss of UBE3A is due to 15q11.2-q13 deletion, mutations in the UBE3A gene, paternal uniparental disomy and genomic imprinting defects. We report here two patients with clinical features of AS referred to our hospital for clinical follow-up and genetic diagnosis. Methylation Specific-Multiplex Ligation-Dependent Probe Amplification (MS-MLPA) of the 15q11.2-q13 region was carried out in our laboratory as the first diagnostic tool detecting two novel UBE3A intragenic deletions. Subsequently, the MLPA P336-A2 kit was used to confirm and determine the size of the UBE3A deletion in the two patients. A review of the clinical features of previously reported patients with whole UBE3A gene or partial intragenic deletions is presented here together with these two new patients. Although rare, UBE3A intragenic deletions may represent a small fraction of AS patients without a genetic diagnosis. Testing for UBE3A intragenic exonic deletions should be performed in those AS patients with a normal methylation pattern and no mutations in the UBE3A gene

    Novel germline variants of CDKN1B and CDKN2C identified during screening for familial primary hyperparathyroidism

    Get PDF
    Altres ajuts: acords transformatius de la UABCDKN1B mutations were established as a cause of multiple endocrine neoplasia 4 (MEN4) syndrome in patients with MEN1 phenotype without a mutation in the MEN1 gene. In addition, variants in other cyclin-dependent kinase inhibitors (CDKIs) were found in some MEN1-like cases without the MEN1 mutation. We aimed to describe novel germline mutations of these genes in patients with primary hyperparathyroidism (PHPT). During genetic screening for familial hyperparathyroidism, three novel CDKIs germline mutations in three unrelated cases between January 2019 and November 2021 were identified. In this report, we describe clinical features, DNA sequence analysis, and familial segregation studies based on these patients and their relatives. Genome-wide DNA study of loss of heterozygosity (LOH), copy number variation (CNV), and p27/kip immunohistochemistry was performed on tumour samples. DNA screening was performed for atypical parathyroid adenomas in cases 1 and 2 and for cystic parathyroid adenoma and young age at diagnosis of PHPT in case 3. Genetic analysis identified likely pathogenic variants of CDKN1B in cases 1 and 2 and a variant of the uncertain significance of CDKN2C, with uniparental disomy in the tumour sample, in case 3. Neoplasm screening of probands showed other non-endocrine tumours in case 1 (colon adenoma with dysplasia and atypical lipomas) and case 2 (aberrant T-cell population) and a non-functional pituitary adenoma in case 3. Germline mutations in CDKIs should be included in gene panels for genetic testing of primary hyperparathyroidism. New germline variants here described can be added to the current knowledge. The online version contains supplementary material available at 10.1007/s40618-022-01948-7

    High Performance of a Dominant/X-Linked Gene Panel in Patients with Neurodevelopmental Disorders

    Get PDF
    Neurodevelopmental disorders (NDDs) affect 2-5% of the population and approximately 50% of cases are due to genetic factors. Since de novo pathogenic variants account for the majority of cases, a gene panel including 460 dominant and X-linked genes was designed and applied to 398 patients affected by intellectual disability (ID)/global developmental delay (GDD) and/or autism (ASD). Pathogenic variants were identified in 83 different genes showing the high genetic heterogeneity of NDDs. A molecular diagnosis was established in 28.6% of patients after high-depth sequencing and stringent variant filtering. Compared to other available gene panel solutions for NDD molecular diagnosis, our panel has a higher diagnostic yield for both ID/GDD and ASD. As reported previously, a significantly higher diagnostic yield was observed: (i) in patients affected by ID/GDD compared to those affected only by ASD, and (ii) in females despite the higher proportion of males among our patients. No differences in diagnostic rates were found between patients affected by different levels of ID severity. Interestingly, patients harboring pathogenic variants presented different phenotypic features, suggesting that deep phenotypic profiling may help in predicting the presence of a pathogenic variant. Despite the high performance of our panel, whole exome-sequencing (WES) approaches may represent a more robust solution. For this reason, we propose the list of genes included in our customized gene panel and the variant filtering procedure presented here as a first-tier approach for the molecular diagnosis of NDDs in WES studies

    Genetic testing for familial hyperparathyroidism : clinical-genetic profile in a Mediterranean cohort

    Get PDF
    Approximately 10% of primary hyperparathyroidism cases are hereditary, due to germline mutations in certain genes. Although clinically relevant, a systematized genetic diagnosis is missing due to a lack of firm evidence regarding individuals to test and which genes to evaluate. A customized gene panel (AIP, AP2S1, CASR, CDC73, CDKN1A, CDKN1B, CDKN2B, CDKN2C, GCM2, GNA11, MEN1, PTH, RET, and TRPV6) was performed in 40 patients from the Mediterranean area with suspected familial hyperparathyroidism (≤45 years of age, family history, high-risk histology, associated tumour, multiglandular disease, or recurrent hyperparathyroidism). We aimed to determine the prevalence of germline variants in these patients, to clinically characterize the probands and their relatives, and to compare disease severity in carriers versus those with a negative genetic test. Germline variants were observed in 9/40 patients (22.5%): 2 previously unknown pathogenic/likely pathogenic variants of CDKN1B (related to MEN4), 1 novel variant of uncertain significance of CDKN2C, 4 variants of CASR (3 pathogenic/likely pathogenic variants and 1 variant of uncertain significance), and 2 novel variants of uncertain significance of TRPV6. Familial segregation studies allowed diagnosis and early treatment of PHPT in first-degree relatives of probands. The observed prevalence of germline variants in the Mediterranean cohort under study was remarkable and slightly higher than that seen in other populations. Genetic screening for suspected familial hyperparathyroidism allows the early diagnosis and treatment of PHPT and other related comorbidities. We recommend genetic testing for patients with primary hyperparathyroidism who present with high-risk features

    Case report : Identification of a novel variant p.Gly215Arg in the CHN1 gene causing Moebius syndrome

    Get PDF
    Background: Moebius Syndrome (MBS) is a rare congenital neurological disorder characterized by paralysis of facial nerves, impairment of ocular abduction and other variable abnormalities. MBS has been attributed to both environmental and genetic factors as potential causes. Until now only two genes, PLXND1 and REV3L have been identified to cause MBS. Results: We present a 9-year-old male clinically diagnosed with MBS, presenting facial palsy, altered ocular mobility, microglossia, dental anomalies and congenital torticollis. Radiologically, he lacks both abducens nerves and shows altered symmetry of both facial and vestibulocochlear nerves. Whole-exome sequence identified a de novo missense variant c.643

    Mutational spectrum by phenotype: panel-based NGS testing of patients with clinical suspition of RASopathy and children with multiple café-au-lait macules

    Full text link
    Children with neurofibromatosis type 1 (NF1) may exhibit an incomplete clinical presentation, making difficult to reach a clinical diagnosis. A phenotypic overlap may exist in children with other RASopathies or with other genetic conditions if only multiple café‐au‐lait macules (CALMs) are present. The syndromes that can converge in these inconclusive phenotypes have different clinical courses. In this context, an early genetic testing has been proposed to be clinically useful to manage these patients. We present the validation and implementation into diagnostics of a custom NGS panel (I2HCP, ICO‐IMPPC Hereditary Cancer Panel) for testing patients with a clinical suspicion of a RASopathy (n = 48) and children presenting multiple CALMs (n = 102). We describe the mutational spectrum and the detection rates identified in these two groups of individuals. We identified pathogenic variants in 21 out of 48 patients with clinical suspicion of RASopathy, with mutations in NF1 accounting for 10% of cases. Furthermore, we identified pathogenic mutations mainly in the NF1 gene, but also in SPRED1, in more than 50% of children with multiple CALMs, exhibiting an NF1 mutational spectrum different from a group of clinically diagnosed NF1 patients (n = 80). An NGS panel strategy for the genetic testing of these two phenotype‐defined groups outperforms previous strategie

    A common cognitive, psychiatric, and dysmorphic phenotype in carriers of NRXN1 deletion

    Get PDF
    Altres ajuts: Fundació Parc Taulí - Institut Universitari UAB CIR2009/33 i CIR2010/034Deletions in the 2p16.3 region that includes the neurexin (NRXN1) gene are associated with intellectual disability and various psychiatric disorders, in particular, autism and schizophrenia. We present three unrelated patients, two adults and one child, in whom we identified an intragenic 2p16.3 deletion within the NRXN1 gene using an oligonucleotide comparative genomic hybridization array. The three patients presented dual diagnosis that consisted of mild intellectual disability and autism and bipolar disorder. Also, they all shared a dysmorphic phenotype characterized by a long face, deep set eyes, and prominent premaxilla. Genetic analysis of family members showed two inherited deletions. A comprehensive neuropsychological examination of the 2p16.3 deletion carriers revealed the same phenotype, characterized by anxiety disorder, borderline intelligence, and dysexecutive syndrome. The cognitive pattern of dysexecutive syndrome with poor working memory and reduced attention switching, mental flexibility, and verbal fluency was the same than those of the adult probands. We suggest that in addition to intellectual disability and psychiatric disease, NRXN1 deletion is a risk factor for a characteristic cognitive and dysmorphic profile. The new cognitive phenotype found in the 2p16.3 deletion carriers suggests that 2p16.3 deletions might have a wide variable expressivity instead of incomplete penetrance
    corecore