130 research outputs found
Exploring the usefulness of scenario archetypes in science-policy processes: experience across IPBES assessments
Scenario analyses have been used in multiple science-policy assessments to better understand complex plausible futures. Scenario archetype approaches are based on the fact that many future scenarios have similar underlying storylines, assumptions, and trends in drivers of change, which allows for grouping of scenarios into typologies, or archetypes, facilitating comparisons between a large range of studies. The use of scenario archetypes in environmental assessments foregrounds important policy questions and can be used to codesign interventions tackling future sustainability issues. Recently, scenario archetypes were used in four regional assessments and one ongoing global assessment within the Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services (IPBES). The aim of these assessments was to provide decision makers with policy-relevant knowledge about the state of biodiversity, ecosystems, and the contributions they provide to people. This paper reflects on the usefulness of the scenario archetype approach within science-policy processes, drawing on the experience from the IPBES assessments. Using a thematic analysis of (a) survey data collected from experts involved in the archetype analyses across IPBES assessments, (b) notes from IPBES workshops, and (c) regional assessment chapter texts, we synthesize the benefits, challenges, and frontiers of applying the scenario archetype approach in a science-policy process. Scenario archetypes were perceived to allow syntheses of large amounts of information for scientific, practice-, and policy-related purposes, streamline key messages from multiple scenario studies, and facilitate communication of them to end users. In terms of challenges, they were perceived as subjective in their interpretation, oversimplifying information, having a limited applicability across scales, and concealing contextual information and novel narratives. Finally, our results highlight what methodologies, applications, and frontiers in archetype-based research should be explored in the future. These advances can assist the design of future large-scale sustainability-related assessment processes, aiming to better support decisions and interventions for equitable and sustainable futures
Ethnomedicinal plant use by Lepcha tribe of Dzongu valley, bordering Khangchendzonga Biosphere Reserve, in North Sikkim, India
Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention
Riverine plastic pollution from fisheries: Insights from the Ganges River system
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordAbandoned, lost or otherwise discarded fishing gear represents a substantial proportion of global marine plastic pollution and can cause significant environmental and socio-economic impacts. Yet little is known about its presence in, and implications for, freshwater ecosystems or its downstream contribution to plastic pollution in the ocean. This study documents fishing gear-related debris in one of the world's largest plastic pollution contributing river catchments, the Ganges. Riverbank surveys conducted along the length of the river, from the coast in Bangladesh to the Himalaya in India, show that derelict fishing gear density increases with proximity to the sea. Fishing nets were the main gear type by volume and all samples examined for polymer type were plastic. Illegal gear types and restricted net mesh sizes were also recorded. Socio-economic surveys of fisher communities explored the behavioural drivers of plastic waste input from one of the world's largest inland fisheries and revealed short gear lifespans and high turnover rates, lack of appropriate end-of-life gear disposal methods and ineffective fisheries regulations. A biodiversity threat assessment identified the air-breathing aquatic vertebrate species most at risk of entanglement in, and impacts from, derelict fishing gear; namely species of threatened freshwater turtle and otter, and the endangered Ganges river dolphin. This research demonstrates a need for targeted and practical interventions to limit the input of fisheries-related plastic pollution to this major river system and ultimately, the global ocean. The approach used in this study could be replicated to examine the inputs, socio-economic drivers and ecological impacts of this previously uncharacterised but important source of plastic pollution in other major rivers worldwide.European CommissionEngineering and Physical Sciences Research Council (EPSRC
Traditional use of medicinal plants among the tribal communities of Chhota Bhangal, Western Himalaya
The importance of medicinal plants in traditional healthcare practices, providing clues to new areas of research and in biodiversity conservation is now well recognized. However, information on the uses for plants for medicine is lacking from many interior areas of Himalaya. Keeping this in view the present study was initiated in a tribal dominated hinterland of western Himalaya. The study aimed to look into the diversity of plant resources that are used by local people for curing various ailments. Questionnaire surveys, participatory observations and field visits were planned to illicit information on the uses of various plants. It was found that 35 plant species are commonly used by local people for curing various diseases. In most of the cases (45%) under ground part of the plant was used. New medicinal uses of Ranunculus hirtellus and Anemone rupicola are reported from this area. Similarly, preparation of "sik" a traditional recipe served as a nutritious diet to pregnant women is also not documented elsewhere. Implication of developmental activities and changing socio-economic conditions on the traditional knowledge are also discussed
Testing a global standard for quantifying species recovery and assessing conservation impact
Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a “Green List of Species” (now the IUCN Green Status of Species). A draft Green Status framework for assessing species’ progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species’ viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species’ recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard
Trans-ancestry genome-wide study of depression identifies 697 associations implicating cell types and pharmacotherapies
In a genome-wide association study (GWAS) meta-analysis of 688,808 individuals with major depression (MD) and 4,364,225 controls from 29 countries across diverse and admixed ancestries, we identify 697 associations at 635 loci, 293 of which are novel. Using fine-mapping and functional tools, we find 308 high-confidence gene associations and enrichment of postsynaptic density and receptor clustering. A neural cell-type enrichment analysis utilizing single-cell data implicates excitatory, inhibitory, and medium spiny neurons and the involvement of amygdala neurons in both mouse and human single-cell analyses. The associations are enriched for antidepressant targets and provide potential repurposing opportunities. Polygenic scores trained using European or multi-ancestry data predicted MD status across all ancestries, explaining up to 5.8% of MD liability variance in Europeans. These findings advance our global understanding of MD and reveal biological targets that may be used to target and develop pharmacotherapies addressing the unmet need for effective treatment
Integrating ethnobiological knowledge into biodiversity conservation in the Eastern Himalayas
Determinantes da decisão de manter áreas protegidas em terras privadas: o caso das reservas legais do Estado de São Paulo
Aligning evidence generation and use across health, development, and environment
© 2019 The Authors Although health, development, and environment challenges are interconnected, evidence remains fractured across sectors due to methodological and conceptual differences in research and practice. Aligned methods are needed to support Sustainable Development Goal advances and similar agendas. The Bridge Collaborative, an emergent research-practice collaboration, presents principles and recommendations that help harmonize methods for evidence generation and use. Recommendations were generated in the context of designing and evaluating evidence of impact for interventions related to five global challenges (stabilizing the global climate, making food production sustainable, decreasing air pollution and respiratory disease, improving sanitation and water security, and solving hunger and malnutrition) and serve as a starting point for further iteration and testing in a broader set of contexts and disciplines. We adopted six principles and emphasize three methodological recommendations: (1) creation of compatible results chains, (2) consideration of all relevant types of evidence, and (3) evaluation of strength of evidence using a unified rubric. We provide detailed suggestions for how these recommendations can be applied in practice, streamlining efforts to apply multi-objective approaches and/or synthesize evidence in multidisciplinary or transdisciplinary teams. These recommendations advance the necessary process of reconciling existing evidence standards in health, development, and environment, and initiate a common basis for integrated evidence generation and use in research, practice, and policy design
- …
