10,819 research outputs found

    Analysis and extension of the Inc* on the satisfiability testing problem

    Get PDF

    Fragmented many-body ground states for scalar bosons in a single trap

    Full text link
    We investigate whether the many-body ground states of bosons in a generalized two-mode model with localized inhomogeneous single-particle orbitals and anisotropic long-range interactions (e.g. dipole-dipole interactions), are coherent or fragmented. It is demonstrated that fragmentation can take place in a single trap for positive values of the interaction couplings, implying that the system is potentially stable. Furthermore, the degree of fragmentation is shown to be insensitive to small perturbations on the single-particle level.Comment: 4 pages of RevTex4, 3 figures; as published in Physical Review Letter

    Precedent and Justice

    Get PDF
    Precedent is the cornerstone of common law method. It is the core mechanism by which the common law reaches just outcomes. Through creation and application of precedent, common law seeks to produce justice. The appellate courts\u27 practice of issuing unpublished, non-precedential opinions has generated considerable discussion about the value of precedent, but that debate has centered on pragmatic and formalistic values. This essay argues that the practice of issuing non-precedential opinions does more than offend constitutional dictates and present pragmatic problems to the appellate system; abandoning precedent undermines justice itself. Issuance of the vast majority of decisions as nonprecedential tears the justice-seeking mechanism of precedent from the heart of our common law system

    Accurate and efficient algorithm for Bader charge integration

    Full text link
    We propose an efficient, accurate method to integrate the basins of attraction of a smooth function defined on a general discrete grid, and apply it to the Bader charge partitioning for the electron charge density. Starting with the evolution of trajectories in space following the gradient of charge density, we derive an expression for the fraction of space neighboring each grid point that flows to its neighbors. This serves as the basis to compute the fraction of each grid volume that belongs to a basin (Bader volume), and as a weight for the discrete integration of functions over the Bader volume. Compared with other grid-based algorithms, our approach is robust, more computationally efficient with linear computational effort, accurate, and has quadratic convergence. Moreover, it is straightforward to extend to non-uniform grids, such as from a mesh-refinement approach, and can be used to both identify basins of attraction of fixed points and integrate functions over the basins.Comment: 19 pages, 8 figure

    Electronic structure of copper intercalated transition metal dichalcogenides: First-principles calculations

    Full text link
    We report first principles calculations, within density functional theory, of copper intercalated titanium diselenides, CuxTiSe2, for values of x ranging from 0 to 0.11. The effect of intercalation on the energy bands and densities of states of the host material is studied in order to better understand the cause of the superconductivity that was recently observed in these structures. We find that charge transfer from the copper atoms to the metal dichalcogenide host layers causes a gradual reduction in the number of holes in the otherwise semi-metallic pristine TiSe2, thus suppressing the charge density wave transition at low temperatures, and a corresponding increase in the density of states at the Fermi level. These effects are probably what drive the superconducting transition in the intercalated systems.Comment: 8 pages, 6 figure

    The role of different negatively charged layers in Ca10(Fe1-xPtxAs)10(Pt3+yAs8) and superconductivity at 30 K in electron-doped (Ca0.8La0.2)10(FeAs)10(Pt3As8)

    Full text link
    The recently discovered compounds Ca10(Fe1-xPtxAs)10(Pt3+yAs8) exhibit superconductivity up to 38 K, and contain iron arsenide (FeAs) and platinum arsenide (Pt3+yAs8) layers separated by layers of Ca atoms. We show that high Tc's above 15 K only emerge if the iron-arsenide layers are at most free of platinum-substitution (x \rightarrow 0) in contrast to recent reports. In fact Pt-substitution is detrimental to higher Tc, which increases up to 38 K only by charge doping of pure FeAs layers. We point out, that two different negatively charged layers [(FeAs)10]n- and (Pt3+yAs8)m- compete for the electrons provided by the Ca2+ ions, which is unique in the field of iron-based superconductors. In the parent compound Ca10(FeAs)10(Pt3As8), no excess charge dopes the FeAs-layer, and superconductivity has to be induced by Pt-substitution, albeit below 15 K. In contrast, the additional Pt-atom in the Pt4As8layer shifts the charge balance between the layers equivalent to charge doping by 0.2 electrons per FeAs. Only in this case Tc raises to 38 K, but decreases again if additionally platinum is substituted for iron. This charge doping scenario is supported by our discovery of superconductivity at 30 K in the electron-doped La-1038 compound (Ca0.8La0.2)10(FeAs)10(Pt3As8) without significant Pt-substitution.Comment: 4 pages, 4 figure
    • …
    corecore