5,772 research outputs found
Surface spin flip probability of mesoscopic Ag wires
Spin relaxation in mesoscopic Ag wires in the diffusive transport regime is
studied via nonlocal spin valve and Hanle effect measurements performed on
permalloy/Ag lateral spin valves. The ratio between momentum and spin
relaxation times is not constant at low temperatures. This can be explained
with the Elliott-Yafet spin relaxation mechanism by considering the momentum
surface relaxation time as being temperature dependent. We present a model to
separately determine spin flip probabilities for phonon, impurity and surface
scattering and find that the spin flip probability is highest for surface
scattering.Comment: 5 pages, 4 figure
Evidence of Vortex Jamming in Abrikosov Vortex Flux Flow Regime
We report on dynamics of non-local Abrikosov vortex flow in mesoscopic
superconducting Nb channels. Magnetic field dependence of the non-local voltage
induced by the flux flow shows that vortices form ordered vortex chains.
Voltage asymmetry (rectification) with respect to the direction of vortex flow
is evidence that vortex jamming strongly moderates vortex dynamics in
mesoscopic geometries. The findings can be applied to superconducting devices
exploiting vortex dynamics and vortex manipulation, including superconducting
wires with engineered pinning centers.Comment: 5 pages, 3 figure
Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers
Spin pumping is a mechanism that generates spin currents from ferromagnetic
resonance (FMR) over macroscopic interfacial areas, thereby enabling sensitive
detection of the inverse spin Hall effect that transforms spin into charge
currents in non-magnetic conductors. Here we study the spin-pumping-induced
voltages due to the inverse spin Hall effect in permalloy/normal metal bilayers
integrated into coplanar waveguides for different normal metals and as a
function of angle of the applied magnetic field direction, as well as microwave
frequency and power. We find good agreement between experimental data and a
theoretical model that includes contributions from anisotropic
magnetoresistance (AMR) and inverse spin Hall effect (ISHE). The analysis
provides consistent results over a wide range of experimental conditions as
long as the precise magnetization trajectory is taken into account. The spin
Hall angles for Pt, Pd, Au and Mo were determined with high precision to be
, , and ,
respectively.Comment: 11 page
Kinetic Energy Density Study of Some Representative Semilocal Kinetic Energy Functionals
There is a number of explicit kinetic energy density functionals for
non-interacting electron systems that are obtained in terms of the electron
density and its derivatives. These semilocal functionals have been widely used
in the literature. In this work we present a comparative study of the kinetic
energy density of these semilocal functionals, stressing the importance of the
local behavior to assess the quality of the functionals. We propose a quality
factor that measures the local differences between the usual orbital-based
kinetic energy density distributions and the approximated ones, allowing to
ensure if the good results obtained for the total kinetic energies with these
semilocal functionals are due to their correct local performance or to error
cancellations. We have also included contributions coming from the laplacian of
the electron density to work with an infinite set of kinetic energy densities.
For all the functionals but one we have found that their success in the
evaluation of the total kinetic energy are due to global error cancellations,
whereas the local behavior of their kinetic energy density becomes worse than
that corresponding to the Thomas-Fermi functional.Comment: 12 pages, 3 figure
Quantifying spin Hall angles from spin pumping: Experiments and Theory
Spin Hall effects intermix spin and charge currents even in nonmagnetic
materials and, therefore, ultimately may allow the use of spin transport
without the need for ferromagnets. We show how spin Hall effects can be
quantified by integrating permalloy/normal metal (N) bilayers into a coplanar
waveguide. A dc spin current in N can be generated by spin pumping in a
controllable way by ferromagnetic resonance. The transverse dc voltage detected
along the permalloy/N has contributions from both the anisotropic
magnetoresistance (AMR) and the spin Hall effect, which can be distinguished by
their symmetries. We developed a theory that accounts for both. In this way, we
determine the spin Hall angle quantitatively for Pt, Au and Mo. This approach
can readily be adapted to any conducting material with even very small spin
Hall angles.Comment: 4 pages, 4 figure
Unanticipated proximity behavior in ferromagnet-superconductor heterostructures with controlled magnetic noncollinearity
Magnetization noncollinearity in ferromagnet-superconductor (F/S)
heterostructures is expected to enhance the superconducting transition
temperature (Tc) according to the domain-wall superconductivity theory, or to
suppress Tc when spin-triplet Cooper pairs are explicitly considered. We study
the proximity effect in F/S structures where the F layer is a Sm-Co/Py
exchange-spring bilayer and the S layer is Nb. The exchange-spring contains a
single, controllable and quantifiable domain wall in the Py layer. We observe
an enhancement of superconductivity that is nonmonotonic as the Py domain wall
is increasingly twisted via rotating a magnetic field, different from
theoretical predictions. We have excluded magnetic fields and vortex motion as
the source of the nonmonotonic behavior. This unanticipated proximity behavior
suggests that new physics is yet to be captured in the theoretical treatments
of F/S systems containing noncollinear magnetization.Comment: 17 pages, 4 figures. Physical Review Letters in pres
Surface-enhanced optical third-harmonic generation in Ag island films
Surface-enhanced optical third-harmonic generation (THG) is observed in
silver island films. The THG intensity from Ag nanoparticles is enhanced by
more than two orders of magnitude with respect to the THG intensity from a
smooth and homogeneous silver surface. This enhancement is attributed to local
plasmon excitation and resonance of the local field at the third-harmonic
wavelength. The diffuse and depolarized component of the enhanced THG is
associated with the third-order hyper-Rayleigh scattering in a 2-D random array
of silver nanoparticles.Comment: 4 pages, 2 figure
The local electronic structure of alpha-Li3N
New theoretical and experimental investigation of the occupied and unoccupied
local electronic density of states (DOS) are reported for alpha-Li3N. Band
structure and density functional theory calculations confirm the absence of
covalent bonding character. However, real-space full-multiple-scattering
(RSFMS) calculations of the occupied local DOS finds less extreme nominal
valences than have previously been proposed. Nonresonant inelastic x-ray
scattering (NRIXS), RSFMS calculations, and calculations based on the
Bethe-Salpeter equation are used to characterize the unoccupied electronic
final states local to both the Li and N sites. There is good agreement between
experiment and theory. Throughout the Li 1s near-edge region, both experiment
and theory find strong similarities in the s- and p-type components of the
unoccupied local final density of states projected onto an orbital angular
momentum basis (l-DOS). An unexpected, significant correspondence exists
between the near-edge spectra for the Li 1s and N 1s initial states. We argue
that both spectra are sampling essentially the same final density of states due
to the combination of long core-hole lifetimes, long photoelectron lifetimes,
and the fact that orbital angular momentum is the same for all relevant initial
states. Such considerations may be generically applicable for low atomic number
compounds.Comment: 34 pages, 7 figures, 1 tabl
Magnetic Structure in Fe/Sm-Co Exchange Spring Bilayers with Intermixed Interfaces
The depth profile of the intrinsic magnetic properties in an Fe/Sm-Co bilayer
fabricated under nearly optimal spring-magnet conditions was determined by
complementary studies of polarized neutron reflectometry and micromagnetic
simulations. We found that at the Fe/Sm-Co interface the magnetic properties
change gradually at the length scale of 8 nm. In this intermixed interfacial
region, the saturation magnetization and magnetic anisotropy are lower and the
exchange stiffness is higher than values estimated from the model based on a
mixture of Fe and Sm-Co phases. Therefore, the intermixed interface yields
superior exchange coupling between the Fe and Sm-Co layers, but at the cost of
average magnetization.Comment: 16 pages, 6 figures and 1 tabl
- …