90 research outputs found
Effect of Algorithm-Based Therapy vs Usual Care on Clinical Success and Serious Adverse Events in Patients with Staphylococcal Bacteremia: A Randomized Clinical Trial
Importance: The appropriate duration of antibiotics for staphylococcal bacteremia is unknown. Objective: To test whether an algorithm that defines treatment duration for staphylococcal bacteremia vs standard of care provides noninferior efficacy without increasing severe adverse events. Design, Setting, and Participants: A randomized trial involving adults with staphylococcal bacteremia was conducted at 16 academic medical centers in the United States (n = 15) and Spain (n = 1) from April 2011 to March 2017. Patients were followed up for 42 days beyond end of therapy for those with Staphylococcus aureus and 28 days for those with coagulase-negative staphylococcal bacteremia. Eligible patients were 18 years or older and had 1 or more blood cultures positive for S aureus or coagulase-negative staphylococci. Patients were excluded if they had known or suspected complicated infection at the time of randomization. Interventions: Patients were randomized to algorithm-based therapy (n = 255) or usual practice (n = 254). Diagnostic evaluation, antibiotic selection, and duration of therapy were predefined for the algorithm group, whereas clinicians caring for patients in the usual practice group had unrestricted choice of antibiotics, duration, and other aspects of clinical care. Main Outcomes and Measures: Coprimary outcomes were (1) clinical success, as determined by a blinded adjudication committee and tested for noninferiority within a 15% margin; and (2) serious adverse event rates in the intention-to-treat population, tested for superiority. The prespecified secondary outcome measure, tested for superiority, was antibiotic days among per-protocol patients with simple or uncomplicated bacteremia. Results: Among the 509 patients randomized (mean age, 56.6 [SD, 16.8] years; 226 [44.4%] women), 480 (94.3%) completed the trial. Clinical success was documented in 209 of 255 patients assigned to algorithm-based therapy and 207 of 254 randomized to usual practice (82.0% vs 81.5%; difference, 0.5% [1-sided 97.5% CI, -6.2% to ∞]). Serious adverse events were reported in 32.5% of algorithm-based therapy patients and 28.3% of usual practice patients (difference, 4.2% [95% CI, -3.8% to 12.2%]). Among per-protocol patients with simple or uncomplicated bacteremia, mean duration of therapy was 4.4 days for algorithm-based therapy vs 6.2 days for usual practice (difference, -1.8 days [95% CI, -3.1 to -0.6]). Conclusions and Relevance: Among patients with staphylococcal bacteremia, the use of an algorithm to guide testing and treatment compared with usual care resulted in a noninferior rate of clinical success. Rates of serious adverse events were not significantly different, but interpretation is limited by wide confidence intervals. Further research is needed to assess the utility of the algorithm. Trial Registration: ClinicalTrials.gov Identifier: NCT01191840
Multicenter evaluation of a lateral-flow device test for diagnosing invasive pulmonary aspergillosis in ICU patients
Introduction: The incidence of invasive pulmonary aspergillosis (IPA) in intensive care unit (ICU) patients is increasing, and early diagnosis of the disease and treatment with antifungal drugs is critical for patient survival. Serum biomarker tests for IPA typically give false-negative results in non-neutropenic patients, and galactomannan (GM) detection, the preferred diagnostic test for IPA using bronchoalveolar lavage (BAL), is often not readily available. Novel approaches to IPA detection in ICU patients are needed. In this multicenter study, we evaluated the performance of an Aspergillus lateral-flow device (LFD) test for BAL IPA detection in critically ill patients. Methods: A total of 149 BAL samples from 133 ICU patients were included in this semiprospective study. Participating centers were the medical university hospitals of Graz, Vienna and Innsbruck in Austria and the University Hospital of Mannheim, Germany. Fungal infections were classified according to modified European Organization for Research and Treatment of Cancer/Mycoses Study Group criteria. Results: Two patients (four BALs) had proven IPA, fourteen patients (sixteen BALs) had probable IPA, twenty patients (twenty-one BALs) had possible IPA and ninety-seven patients (one hundred eight BALs) did not fulfill IPA criteria. Sensitivity, specificity, negative predictive value, positive predictive value and diagnostic odds ratios for diagnosing proven and probable IPA using LFD tests of BAL were 80%, 81%, 96%, 44% and 17.6, respectively. Fungal BAL culture exhibited a sensitivity of 50% and a specificity of 85%. Conclusion: LFD tests of BAL showed promising results for IPA diagnosis in ICU patients. Furthermore, the LFD test can be performed easily and provides rapid results. Therefore, it may be a reliable alternative for IPA diagnosis in ICU patients if GM results are not rapidly available. Trial registration: ClinicalTrials.gov NCT02058316. Registered 20 January 2014
Cryptococcus: from environmental saprophyte to global pathogen.
Cryptococcosis is a globally distributed invasive fungal infection that is caused by species within the genus Cryptococcus which presents substantial therapeutic challenges. Although natural human-to-human transmission has never been observed, recent work has identified multiple virulence mechanisms that enable cryptococci to infect, disseminate within and ultimately kill their human host. In this Review, we describe these recent discoveries that illustrate the intricacy of host-pathogen interactions and reveal new details about the host immune responses that either help to protect against disease or increase host susceptibility. In addition, we discuss how this improved understanding of both the host and the pathogen informs potential new avenues for therapeutic development
In vivo Hypoxia and a Fungal Alcohol Dehydrogenase Influence the Pathogenesis of Invasive Pulmonary Aspergillosis
Currently, our knowledge of how pathogenic fungi grow in mammalian host environments is limited. Using a chemotherapeutic murine model of invasive pulmonary aspergillosis (IPA) and 1H-NMR metabolomics, we detected ethanol in the lungs of mice infected with Aspergillus fumigatus. This result suggests that A. fumigatus is exposed to oxygen depleted microenvironments during infection. To test this hypothesis, we utilized a chemical hypoxia detection agent, pimonidazole hydrochloride, in three immunologically distinct murine models of IPA (chemotherapeutic, X-CGD, and corticosteroid). In all three IPA murine models, hypoxia was observed during the course of infection. We next tested the hypothesis that production of ethanol in vivo by the fungus is involved in hypoxia adaptation and fungal pathogenesis. Ethanol deficient A. fumigatus strains showed no growth defects in hypoxia and were able to cause wild type levels of mortality in all 3 murine models. However, lung immunohistopathology and flow cytometry analyses revealed an increase in the inflammatory response in mice infected with an alcohol dehydrogenase null mutant strain that corresponded with a reduction in fungal burden. Consequently, in this study we present the first in vivo observations that hypoxic microenvironments occur during a pulmonary invasive fungal infection and observe that a fungal alcohol dehydrogenase influences fungal pathogenesis in the lung. Thus, environmental conditions encountered by invading pathogenic fungi may result in substantial fungal metabolism changes that influence subsequent host immune responses
- …