251 research outputs found

    Spin Hall Drag

    Get PDF
    We predict a new effect in electronic bilayers: the {\it Spin Hall Drag}. The effect consists in the generation of spin accumulation across one layer by an electric current along the other layer. It arises from the combined action of spin-orbit and Coulomb interactions. Our theoretical analysis, based on the Boltzmann equation formalism, identifies two main contributions to the spin Hall drag resistivity: the side-jump contribution, which dominates at low temperature, going as T2T^2, and the skew-scattering contribution, which is proportional to T3T^3. The induced spin accumulation is large enough to be detected in optical rotation experiments.Comment: 5 pages, 2 figure

    Sub-threshold resonances in few-neutron systems

    Get PDF
    Three- and four-neutron systems are studied within the framework of the hyperspherical approach with a local S-wave nn-potential. Possible bound and resonant states of these systems are sought as zeros of three- and four-body Jost functions in the complex momentum plane. It is found that zeros closest to the origin correspond to sub-threshold (nnn) (1/2-) and (nnnn) (0+) resonant states. The positions of these zeros turned out to be sensitive to the choice of the nnnn--potential. For the Malfliet- Tjon potential they are E(nnn)=-4.9-i6.9 (MeV) and E(nnnn)=-2.6-i9.0 (MeV). Movement of the zeros with an artificial increase of the potential strength also shows an extreme sensitivity to the choice of potential. Thus, to generate ^3n and ^4n bound states, the Yukawa potential needs to be multiplied by 2.67 and 2.32 respectively, while for the Malfliet-Tjon potential the required multiplicative factors are 4.04 and 3.59.Comment: Latex, 22 pages, no PS-figures, submitted to J.Phys.

    Compact and Loosely Bound Structures in Light Nuclei

    Get PDF
    A role of different components in the wave function of the weakly bound light nuclei states was studied within the framework of the cluster model, taking into account of orbitals "polarization". It was shown that a limited number of structures associated with the different modes of nucleon motion can be of great importance for such systems. Examples of simple and quite flexible trial wave functions are given for the nuclei 8^8Be, 6^6He. Expressions for the microscopic wave functions of these nuclei were found and used for the calculation of basic nuclear characteristics, using well known central-exchange nucleon-nucleon potentials.Comment: 19 pages, 3 ps figure

    Inhomogeneity of the intrinsic magnetic field in superconducting YBa2Cu3OX compounds as revealed by rare-earth EPR-probe

    Full text link
    X-band electron paramagnetic resonance on doped Er3+ and Yb3+ ions in Y0.99(Yb,Er)0.01Ba2Cu3OX compounds with different oxygen contents in the wide temperature range (4-120)K have been made. In the superconducting species, the strong dependencies of the linewidth and resonance line position from the sweep direction of the applied magnetic field are revealed at the temperatures significantly below TC. The possible origins of the observed hysteresis are analyzed. Applicability of the presented EPR approach to extract information about the dynamics of the flux-line lattice and critical state parameters (critical current density, magnetic penetration depth, and characteristic spatial scale of the inhomogeneity) is discussedComment: 17 pages, 5 Figures. Renewed versio

    Hyperon-Nucleon Final State Interaction in Kaon Photoproduction of the Deuteron

    Get PDF
    Final state hyperon-nucleon interaction in strangeness photoproduction of the deuteron is investigated making use of the covariant reaction formalism and the P-matrix approach to the YN system. Remarkably simple analytical expression for the amplitude is obtained. Pronounced effects due to final state interaction are predicted including the manifestation of the 2.13 GeV resonance.Comment: LaTeX, 13 page

    Missing 2k_F Response for Composite Fermions in Phonon Drag

    Full text link
    The response of composite Fermions to large wavevector scattering has been studied through phonon drag measurements. While the response retains qualitative features of the electron system at zero magnetic field, notable discrepancies develop as the system is varied from a half-filled Landau level by changing density or field. These deviations, which appear to be inconsistent with the current picture of composite Fermions, are absent if half-filling is maintained while changing density. There remains, however, a clear deviation from the temperature dependence anticipated for 2k_F scattering.Comment: 4 pages, 3 figures. Submitted to Phys. Rev. Let

    Surface acoustic wave attenuation by a two-dimensional electron gas in a strong magnetic field

    Full text link
    The propagation of a surface acoustic wave (SAW) on GaAs/AlGaAs heterostructures is studied in the case where the two-dimensional electron gas (2DEG) is subject to a strong magnetic field and a smooth random potential with correlation length Lambda and amplitude Delta. The electron wave functions are described in a quasiclassical picture using results of percolation theory for two-dimensional systems. In accordance with the experimental situation, Lambda is assumed to be much smaller than the sound wavelength 2*pi/q. This restricts the absorption of surface phonons at a filling factor \bar{\nu} approx 1/2 to electrons occupying extended trajectories of fractal structure. Both piezoelectric and deformation potential interactions of surface acoustic phonons with electrons are considered and the corresponding interaction vertices are derived. These vertices are found to differ from those valid for three-dimensional bulk phonon systems with respect to the phonon wave vector dependence. We derive the appropriate dielectric function varepsilon(omega,q) to describe the effect of screening on the electron-phonon coupling. In the low temperature, high frequency regime T << Delta (omega_q*Lambda /v_D)^{alpha/2/nu}, where omega_q is the SAW frequency and v_D is the electron drift velocity, both the attenuation coefficient Gamma and varepsilon(omega,q) are independent of temperature. The classical percolation indices give alpha/2/nu=3/7. The width of the region where a strong absorption of the SAW occurs is found to be given by the scaling law |Delta \bar{\nu}| approx (omega_q*Lambda/v_D)^{alpha/2/nu}. The dependence of the electron-phonon coupling and the screening due to the 2DEG on the filling factor leads to a double-peak structure for Gamma(\bar{\nu}).Comment: 17 pages, 3 Postscript figures, minor changes mad

    Coupled-channel effective field theory and proton-7^7Li scattering

    Full text link
    We apply the renormalisation group (RG) to analyse scattering by short-range forces in systems with coupled channels. For two S-wave channels, we find three fixed points, corresponding to systems with zero, one or two bound or virtual states at threshold. We use the RG to determine the power countings for the resulting effective field theories. In the case of a single low-energy state, the resulting theory takes the form of an effective-range expansion in the strongly interacting channel. We also extend the analysis to include the effects of the Coulomb interaction between charged particles. The approach is then applied to the coupled p+7p+{^7}Li and n+7n+{^7}Be channels which couple to a JP=2−J^P=2^- state of 8^8Be very close to the n+7n+{^7}Be threshold. At next-to-leading order, we are able to get a good description of the p+7p+{^7}Li phase shift and the 7{^7}Be(n,p)7{^7}Li cross section using four parameters. Fits at one order higher are similarly good but the available data are not sufficient to determine all five parameters uniquely.Comment: 22 pages, 2 figures, RevTeX4, typos corrected, accepted for publication in European Physical Journal
    • 

    corecore