2,355 research outputs found

    A Hardware Implementation of Artificial Neural Network Using Field Programmable Gate Arrays

    Get PDF
    An artificial neural network algorithm is implemented using a field programmable gate array hardware. One hidden layer is used in the feed-forward neural network structure in order to discriminate one class of patterns from the other class in real time. With five 8-bit input patterns, six hidden nodes, and one 8-bit output, the implemented hardware neural network makes decision on a set of input patterns in 11 clocks and the result is identical to what to expect from off-line computation. This implementation may be used in level 1 hardware triggers in high energy physics experimentsComment: 13 pages, 4 figures, submitted to Nucl. Instr. Meth.

    Improved primary vertex finding for collider detectors

    Full text link
    Primary vertex finding for collider experiments is studied. The efficiency and precision of finding interaction vertices can be improved by advanced clustering and classification methods, such as agglomerative clustering with fast pairwise nearest neighbor search, followed by Gaussian mixture model or k-means clustering.Comment: 12 pages, 10 figures, submitted to Nucl. Instrum. Meth.

    ρ\rho-Meson Production and Decay in Proton-Nucleus Collisions

    Full text link
    We analyze the production of ρ\rho-mesons in p+Ap + A reactions including both the production by proton-nucleon as well as pion-nucleon collisions within a coupled channel transport approach. The final state interactions of the ρ\rho-meson with nucleons are evaluated from a resonance model which allows to extract elastic and inelastic cross sections. We include the latter final state interactions, the ρ\rho-meson decay into two pions as well as the final pion-nucleon interactions within the transport approach. We find the invariant mass distribution of pion pairs to be sensitive to the ρ\rho-meson properties in the nuclear medium. However, due to the strong final state interactions of pions only light targets like 12C^{12}C might be suited to extract a ρ\rho-signal from the uncorrelated two pion background which carries information about the in-medium properties of the ρ\rho-meson.Comment: 27 pages, LaTeX, including 13 ps-figures, UGI-97-20, Nucl. Phys. A., in pres

    Beam Test Performance and Simulation of Prototypes for the ALICE Silicon Pixel Detector

    Full text link
    The silicon pixel detector (SPD) of the ALICE experiment in preparation at the Large Hadron Collider (LHC) at CERN is designed to provide the precise vertex reconstruction needed for measuring heavy flavor production in heavy ion collisions at very high energies and high multiplicity. The SPD forms the innermost part of the Inner Tracking System (ITS) which also includes silicon drift and silicon strip detectors. Single assembly prototypes of the ALICE SPD have been tested at the CERN SPS using high energy proton/pion beams in 2002 and 2003. We report on the experimental determination of the spatial precision. We also report on the first combined beam test with prototypes of the other ITS silicon detector technologies at the CERN SPS in November 2004. The issue of SPD simulation is briefly discussed.Comment: 4 pages, 5 figures, prepared for proceedings of 7th International Position Sensitive Detectors Conference, Liverpool, Sept. 200

    Effect of the intermediate velocity emissions on the quasi-projectile properties for the Ar+Ni system at 95 A.MeV

    Full text link
    The quasi-projectile (QP) properties are investigated in the Ar+Ni collisions at 95 A.MeV taking into account the intermediate velocity emission. Indeed, in this reaction, between 52 and 95 A.MeV bombarding energies, the number of particles emitted in the intermediate velocity region is related to the overlap volume between projectile and target. Mean transverse energies of these particles are found particularly high. In this context, the mass of the QP decreases linearly with the impact parameter from peripheral to central collisions whereas its excitation energy increases up to 8 A.MeV. These results are compared to previous analyses assuming a pure binary scenario

    Strange particle production in 158 and 40 AA GeV/cc Pb-Pb and p-Be collisions

    Full text link
    Results on strange particle production in Pb-Pb collisions at 158 and 40 AA GeV/cc beam momentum from the NA57 experiment at CERN SPS are presented. Particle yields and ratios are compared with those measured at RHIC. Strangeness enhancements with respect to p-Be reactions at the same beam momenta have been also measured: results about their dependence on centrality and collision energy are reported and discussed.Comment: Contribution to the proceedings of the "Hot Quarks 2004" Conference, July 18-24 2004, New Mexico, USA, submitted to Journal of Physics G 7 pages, 5 figure

    INFN What Next: Ultra-relativistic Heavy-Ion Collisions

    Full text link
    This document was prepared by the community that is active in Italy, within INFN (Istituto Nazionale di Fisica Nucleare), in the field of ultra-relativistic heavy-ion collisions. The experimental study of the phase diagram of strongly-interacting matter and of the Quark-Gluon Plasma (QGP) deconfined state will proceed, in the next 10-15 years, along two directions: the high-energy regime at RHIC and at the LHC, and the low-energy regime at FAIR, NICA, SPS and RHIC. The Italian community is strongly involved in the present and future programme of the ALICE experiment, the upgrade of which will open, in the 2020s, a new phase of high-precision characterisation of the QGP properties at the LHC. As a complement of this main activity, there is a growing interest in a possible future experiment at the SPS, which would target the search for the onset of deconfinement using dimuon measurements. On a longer timescale, the community looks with interest at the ongoing studies and discussions on a possible fixed-target programme using the LHC ion beams and on the Future Circular Collider.Comment: 99 pages, 56 figure

    Nucleon and hadron structure changes in the nuclear medium and impact on observables

    Full text link
    We review the effect of hadron structure changes in a nuclear medium using the quark-meson coupling (QMC) model, which is based on a mean field description of non-overlapping nucleon (or baryon) bags bound by the self-consistent exchange of scalar and vector mesons. This approach leads to simple scaling relations for the changes of hadron masses in a nuclear medium. It can also be extended to describe finite nuclei, as well as the properties of hypernuclei and meson-nucleus deeply bound states. It is of great interest that the model predicts a variation of the nucleon form factors in nuclear matter. We also study the empirically observed, Bloom-Gilman (quark-hadron) duality. Other applications of the model include subthreshold kaon production in heavy ion collisions, D and D-bar meson production in antiproton-nucleus collisions, and J/Psi suppression. In particular, the modification of the D and D-bar meson properties in nuclear medium can lead to a large J/Psi absorption cross section, which explains the observed J/Psi suppression in relativistic heavy ion collisions.Comment: 143 pages, 77 figures, references added, a review article accepted in Prog. Part. Nucl. Phy

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur
    corecore