2,355 research outputs found
A Hardware Implementation of Artificial Neural Network Using Field Programmable Gate Arrays
An artificial neural network algorithm is implemented using a field
programmable gate array hardware. One hidden layer is used in the feed-forward
neural network structure in order to discriminate one class of patterns from
the other class in real time. With five 8-bit input patterns, six hidden nodes,
and one 8-bit output, the implemented hardware neural network makes decision on
a set of input patterns in 11 clocks and the result is identical to what to
expect from off-line computation. This implementation may be used in level 1
hardware triggers in high energy physics experimentsComment: 13 pages, 4 figures, submitted to Nucl. Instr. Meth.
Improved primary vertex finding for collider detectors
Primary vertex finding for collider experiments is studied. The efficiency
and precision of finding interaction vertices can be improved by advanced
clustering and classification methods, such as agglomerative clustering with
fast pairwise nearest neighbor search, followed by Gaussian mixture model or
k-means clustering.Comment: 12 pages, 10 figures, submitted to Nucl. Instrum. Meth.
-Meson Production and Decay in Proton-Nucleus Collisions
We analyze the production of -mesons in reactions including
both the production by proton-nucleon as well as pion-nucleon collisions within
a coupled channel transport approach. The final state interactions of the
-meson with nucleons are evaluated from a resonance model which allows to
extract elastic and inelastic cross sections. We include the latter final state
interactions, the -meson decay into two pions as well as the final
pion-nucleon interactions within the transport approach. We find the invariant
mass distribution of pion pairs to be sensitive to the -meson properties
in the nuclear medium. However, due to the strong final state interactions of
pions only light targets like might be suited to extract a
-signal from the uncorrelated two pion background which carries
information about the in-medium properties of the -meson.Comment: 27 pages, LaTeX, including 13 ps-figures, UGI-97-20, Nucl. Phys. A.,
in pres
Beam Test Performance and Simulation of Prototypes for the ALICE Silicon Pixel Detector
The silicon pixel detector (SPD) of the ALICE experiment in preparation at
the Large Hadron Collider (LHC) at CERN is designed to provide the precise
vertex reconstruction needed for measuring heavy flavor production in heavy ion
collisions at very high energies and high multiplicity. The SPD forms the
innermost part of the Inner Tracking System (ITS) which also includes silicon
drift and silicon strip detectors. Single assembly prototypes of the ALICE SPD
have been tested at the CERN SPS using high energy proton/pion beams in 2002
and 2003. We report on the experimental determination of the spatial precision.
We also report on the first combined beam test with prototypes of the other ITS
silicon detector technologies at the CERN SPS in November 2004. The issue of
SPD simulation is briefly discussed.Comment: 4 pages, 5 figures, prepared for proceedings of 7th International
Position Sensitive Detectors Conference, Liverpool, Sept. 200
Effect of the intermediate velocity emissions on the quasi-projectile properties for the Ar+Ni system at 95 A.MeV
The quasi-projectile (QP) properties are investigated in the Ar+Ni collisions
at 95 A.MeV taking into account the intermediate velocity emission. Indeed, in
this reaction, between 52 and 95 A.MeV bombarding energies, the number of
particles emitted in the intermediate velocity region is related to the overlap
volume between projectile and target. Mean transverse energies of these
particles are found particularly high. In this context, the mass of the QP
decreases linearly with the impact parameter from peripheral to central
collisions whereas its excitation energy increases up to 8 A.MeV. These results
are compared to previous analyses assuming a pure binary scenario
Strange particle production in 158 and 40 GeV/ Pb-Pb and p-Be collisions
Results on strange particle production in Pb-Pb collisions at 158 and 40
GeV/ beam momentum from the NA57 experiment at CERN SPS are presented.
Particle yields and ratios are compared with those measured at RHIC.
Strangeness enhancements with respect to p-Be reactions at the same beam
momenta have been also measured: results about their dependence on centrality
and collision energy are reported and discussed.Comment: Contribution to the proceedings of the "Hot Quarks 2004" Conference,
July 18-24 2004, New Mexico, USA, submitted to Journal of Physics G 7 pages,
5 figure
Enhancing the media's democratic role: a comparative study of the legal environment of the media in Botswana and South Africa
INFN What Next: Ultra-relativistic Heavy-Ion Collisions
This document was prepared by the community that is active in Italy, within
INFN (Istituto Nazionale di Fisica Nucleare), in the field of
ultra-relativistic heavy-ion collisions. The experimental study of the phase
diagram of strongly-interacting matter and of the Quark-Gluon Plasma (QGP)
deconfined state will proceed, in the next 10-15 years, along two directions:
the high-energy regime at RHIC and at the LHC, and the low-energy regime at
FAIR, NICA, SPS and RHIC. The Italian community is strongly involved in the
present and future programme of the ALICE experiment, the upgrade of which will
open, in the 2020s, a new phase of high-precision characterisation of the QGP
properties at the LHC. As a complement of this main activity, there is a
growing interest in a possible future experiment at the SPS, which would target
the search for the onset of deconfinement using dimuon measurements. On a
longer timescale, the community looks with interest at the ongoing studies and
discussions on a possible fixed-target programme using the LHC ion beams and on
the Future Circular Collider.Comment: 99 pages, 56 figure
Nucleon and hadron structure changes in the nuclear medium and impact on observables
We review the effect of hadron structure changes in a nuclear medium using
the quark-meson coupling (QMC) model, which is based on a mean field
description of non-overlapping nucleon (or baryon) bags bound by the
self-consistent exchange of scalar and vector mesons. This approach leads to
simple scaling relations for the changes of hadron masses in a nuclear medium.
It can also be extended to describe finite nuclei, as well as the properties of
hypernuclei and meson-nucleus deeply bound states. It is of great interest that
the model predicts a variation of the nucleon form factors in nuclear matter.
We also study the empirically observed, Bloom-Gilman (quark-hadron) duality.
Other applications of the model include subthreshold kaon production in heavy
ion collisions, D and D-bar meson production in antiproton-nucleus collisions,
and J/Psi suppression. In particular, the modification of the D and D-bar meson
properties in nuclear medium can lead to a large J/Psi absorption cross
section, which explains the observed J/Psi suppression in relativistic heavy
ion collisions.Comment: 143 pages, 77 figures, references added, a review article accepted in
Prog. Part. Nucl. Phy
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
- …
